Volume III - Part 1 Final Detailed Project Report

New Technology Centre at Bhiwadi (General Engineering-Auto Sector)

Technology Centre Systems Program

Report No: 2014-Delhi-0440 December 2014

Submitted

То

The Office of Development Commissioner - MSME Ministry of MSME, Govt. of India Maulana Azad Road, New Delhi -110001 28 Nov 2014

Director (Tool Room) Office of Development Commissioner, MSME Ministry of MSME Nirman Bhawan, Maulana Azad Road, New Delhi -110108

Dear Sir,

As part of our engagement to provide Consulting services for establishment of Program Management Unit (PMU) for designing the project, undertaking the pre-project activities and providing implementation support during the course of the Technology Centre Systems Program (TCSP), we hereby submit the Final Detailed Project Report for setting up of Technology Centre at Bhiwadi for your kind perusal. The deliverable has been prepared in accordance with our engagement agreement dated 07 November 2013, and our procedures were limited to those described in that agreement.

This Detailed Project Report is based on inquiries of and discussions with:

- ► O/o DC MSME
- PSC
- Industry experts
- World Bank Mission
- Auto firms and Ancillary units
- ► Government Institutes and Industry association
- Secondary Research

We have not sought to confirm the accuracy of the data or the information and explanations provided by the O/o DC MSME. Our work has been limited in scope and time and we stress that more detailed procedures may reveal other issues not captured here. The procedures summarized in our Final Detailed Project Report do not constitute an audit, a review or other form of assurance in accordance with any generally accepted auditing, review or other assurance standards, and accordingly we do not express any form of assurance. This Final Detailed Project Report is intended solely for the information and use of the Office of DC-MSME and is not intended to be and should not be used by anyone other than this specified party.

We appreciate the cooperation and assistance provided to us during the preparation of this report. If you have any questions, please contact the undersigned.

Very truly yours,

Guru Malladi, Partner - Advisory Services

Disclaimer

This Final Detailed Project Report for development of technology centre at Bhiwadi as part of consulting services to establish a Programme Management Unit (PMU) for designing the project, undertaking the pre-project activities and providing implementation support during the course of the Technology Centre Systems Program (TCSP) has been prepared by Ernst & Young LLP (hereinafter referred to as 'EY' or 'Ernst & Young' or 'Us') and delivered to the 'Office of Development Commissioner - Ministry of Micro, Small & Medium Enterprise (O/o of DC-MSME)' (hereinafter referred to as 'the Client').

The inferences and analyses made by EY in this report are based on information collated through primary research, secondary research, discussions with the client personnel and key stakeholders and our knowledge about the program and its objectives. EY has taken due care to validate the authenticity and correctness of the information from various sources, however, no representations or warranty, expressed or implied, is given by EY or any of its respective partners, officers, employees or agents as to the accuracy or completeness of the information, data or opinions provided to EY by third parties or secondary sources.

Nothing contained herein, to the contrary and in no event shall EY be liable for any loss of profit or revenues and any direct, incidental or consequential damages incurred by the Client or any other user of this report.

In case the report is to be made available or disclosed to any third party, this disclaimer along with all the limiting factors must be issued to the concerned party. The fact that EY assumes no liability whatsoever, if for the reason any party is led to incur any loss for acting upon this report, must be brought to the notice of the concerned party.

© EY, 2014

Acknowledgement

We would like to express our sincere gratitude to MoMSME and its officials for their involvement and valuable inputs during the preparation of this DPR. Special thanks to Shri Amarendra Sinha, IAS, (DC-MSME) and Shri R.K. Rai (Director-TR, MoMSME) for their proactive support and guidance to the team during the entire process.

We would like to thank the GMs of existing MSME TCs for their guidance and valuable inputs during preparation of the DPR.

We would like to convey our sincere thanks to officials of RIICO for their support during the on site visit for the proposed Technology Centre at Bhiwadi. Further, we would also like to thank officials of Bhiwadi Manufacturers Association (BMA) for facilitating in conducting workshop with representation from more than fifty industry players for discussion and inputs.

Also, we must extend our sincere thanks to all the stakeholders like OEMs, Tier I & II suppliers, industry associations, Government Institutes and ancillary units who gave us their valuable time and insights with respect to various dimensions of the tooling industry and its support requirements. Without their help, capturing of the industry insights would not have been possible.

Abbreviations

ACMS	Auto Components Manufacturer Samiti
AICTE	All India Council For Technical Education
BCCI	Bhiwadi Chamber Of Commerce and Industry
BMA	Bhiwadi Manufacturers Association
CAD	Computer-aided design
CAE	Computer-aided engineering
CAGR	Compound annual growth rate
CAM	Computer-aided manufacturing
CDGI	Centre for Development of Glass Industries
CETP	Common effluent treatment plant
CFC	Common facility centre
CFTI	Central Footwear Training Institute
CIHT	Central Institute of Hand Tools
CITD	Central Institute of Tool Design
CMC	Construction management consultant
CNC	Computerized numerical control
CNM	Cluster network manager
CSIR	Council of Scientific and Industrial Research
CST	Central sales tax
CTR	Commercial tool rooms
CTTC	Central Tool Room & Training Centre
DC	Development Commissioner
DIC	District Industrial Centre
DMIC	Delhi Mumbai Industrial Corridor
DNGIR	Dadri Noida Ghaziabad Investment Region
EDM	Electrical discharge machining
EPIP	Export promotion industrial parks
ESDM	Electronics system design and manufacturing
ESTC	Electronics Service & Training Centre
EY	Ernst and Young LLP
FFDC	Fragrance & Flavour Development Centre
FRP	Fibre reinforced plastic
FSIA	Faridabad Small Industries Association
FSSP	Full social screening process
FTA	Free trade agreement

GDP	Gross domestic product
GESIP	Gender, equity and social inclusion plan
GIA	Gurgaon Industrial Association
GIZ	Gesellschaft für Internationale Zusammenarbeit
Gol	Government of India
HDI	Human development index
HFC	Haryana Financial Corporation
HMSI	Honda motorcycle and scooter India
HSC	Higher secondary certificate
HSCIL	Honda Siel cars India
HSIIDC	Haryana State Industrial & Infrastructure Development Corporation Limited
IDEMI	Institute for Design of Electrical Measuring Instruments
IDTR	Indo Danish Tool Room
IGTR	Indo German Tool Room
IISc	Indian Institute of Science
IP	Internet protocol
IPSSP	Indigenous people's social screening process
ITI	Industrial training institute
ITSP	IT Service Provider
JBM	Jay Bharat Maruti
JETRO	Japan external trade organization
KBN	Khushkhera-Bhiwadi-Neemrana
KPI	Key performance indicator
KVIB	Khadi and Village India Board
KVIC	Khadi and Village Industries Commission
L&T	Larsen and Toubro
LLP	Limited liability partnership
MICO	Motor industries company limited
MIG	Metal inert gas
MIWA	Manesar Industries Welfare Association
MoMSME	Ministry of Micro, Small & Medium Enterprises
MOU	Memorandum of understanding
MSME	Micro, Small & Medium Enterprises
NCR	National capital region
NCVT	National Council for Vocational Training
NEPZ	Noida Export Processing Zone
NIA	Neemrana Industries Association

NPSP	National portal service provider
NSIC	National Small Industries Corporation
NSSP	No social screening process
O/o of DC-MSME	Office of Development Commissioner - Micro, Small & Medium Enterprise
OEM	Original equipment manufacturer
OP	Operational Policy
PDO	Program's development objective
PMU	Program management unit
PNB	Punjab National Bank
PPDC	Process and Product Development Centre
PTA	Preferential trade agreement
PVC	Polyvinyl chloride
RFC	Rajasthan Financial Corporation
RFD	Result framework document
RIICO	Rajasthan State Industrial Development and Investment Corporation
RPT	Rapid prototyping
RSLDC	Rajasthan Skill and Livelihood Development Corporation
RSLDC	Rajasthan Mission On Skill and Livelihoods
SAIL	Steel Authority of India limited
SDC	Skill Development Centre
SFC	State Financial Corporation
SSC	Senior secondary certificate
STP	Sewage treatment plants
TAGMA	Tool & Gauge Manufacturers Association of India
TCs	Technology centres
TCSP	Technology Centres Systems Programme
TDC	Technology Development Centres
TIG	Tungsten inert gas
TP	Technology partner
TR	Tool room
TRTC	Tool room & training centre
UNIDO	United Nations Industrial Development Organization
UPS	Uninterruptible power supplies
VAT	Value added tax
VLSI	Very-large-scale integration
VMC	Vertical Machining Centre

Revision History

Version	Issue date	Amendment description	Prepared by	Reviewed by
1.0	08 June 2014	-	Lokesh Bhatia Rashmi Mallick	Prakash Singh
1.5	23 June 2014	Changes incorporated as discussed with Prakash	Lokesh Bhatia Rashmi Mallick	Anil Bhandari Amar Shankar Prakash Singh
2.0	11 July 2014	Changes incorporated as discussed with Anil, Amar and Prakash	Lokesh Bhatia Rashmi Mallick	Anil Bhandari Prakash Singh
2.1	16 July 2014	Changes incorporated as discussed with Anil, and Prakash	Lokesh Bhatia Utsav Mishra Rashmi Mallick	Shri R. K. Rai
2.2	05 Aug 2014	Changes incorporated as discussed with Shri R. K. Rai	Lokesh Bhatia Rashmi Mallick	Amar Shankar
2.3	14 Aug 2014	Changes incorporated as discussed with Amar Shankar	Lokesh Bhatia Utsav Mishra Rashmi Mallick	Guru Malladi T. Koshy
2.4	19 Aug 2014	Changes incorporated as discussed with Guru	Lokesh Bhatia Rashmi Mallick	
3.4	30 Dec 2014	Changes incorporated as per O/o DC MSME and PSC members	Utsav Mishra	Anil Bhandari

Table of contents

Executiv	e summary	16
1. Intr	oduction	22
1.1	Background and project rationale	22
1.1	1 Demographic overview and challenges	23
1.1	2 Country's manufacturing objectives	24
1.1	.3 Recommendations of XII plan Working group & Parliamentary Standing (Committee 25
1.1	4 Technology Centres Systems Program	26
1.1	5 Key TCSP stakeholders	
1.1	.6 RFD of TCSP	31
1.2	Overview of existing MSME TCs	
1.3	Evaluation study of TCs and recommendations of the experts	
2. DPF	Robjective and approach	
2.1	Objective	40
2.2	Approach	
3. Frai	mework for selection of industry/ clusters/ systems/ location for new TCs	43
3.1	Location selection framework	43
3.2	Selection of Bhiwadi location for setting up of new TC	47
4. Loc	ation brief	
4.1	Regional overview	
4.2	Demographic profile of the district	53
4.3	Regional stakeholders	54
4.3.1	Government bodies	54
4.3.2	Industry associations	56
4.3.3	Leading manufacturers	58
4.3.4	Raw material suppliers	58
4.3.5	Financial institutions	59
4.3.6	Technical education institutions and vocational training	59
5. Opp	ortunity and need assessment	62
5.1	India scenario	62
5.1.1	Primary research	65
5.1.2	Challenges faced by MSME TRs	68
5.2	Market opportunity	70
5.2.1	Market in core sectors in the catchment	71
5.2.2	Market in other potential sectors in catchment	78
5.2.3	Market outside catchment area	80
5.3	Opportunities associated with other mega projects planned in Bhiwadi	

5.4	Potential market for four and two wheelers	
6. Soc	ial and environmental safeguards	
6.1	Socio-economic profile of district	
6.2	Social and environmental screening	
6.2.1	Social screening	
6.2.2	Environmental screening	
6.3	Gender equity and social inclusion strategy	100
6.4	Sample monitoring and reporting template	102
7. Clea	arances required and respective authorities	104
8. Mar	npower and human resource development	108
8.1	Proposed organisation structure	108
8.2	Phase wise induction of human resources	112
8.3	Roles and responsibilities	117
8.4	Governance structure	126
8.4.1	Selection of the Governance Model for the new TCs	126
8.4.2	Composition of the Governing Council	129
9. Mar	keting plan of Bhiwadi TC	
10. F	ocus area for Bhiwadi TC	
10.1	Plant and machinery for the TC	
10.1.1	1 Budgetary cost of plant and machinery	147
10.2	Production	
10.3	Incubation centre	151
10.3.1	1 Incubation centre at Bhiwadi TC	153
10.4	Training	156
10.5	Consultancy	
10.6	Proposed support system to enable private TRs tap the market	172
10.7	Industry collaborations and associations	174
10.8	Technology collaboration	179
11. Q	Quality system	182
12. Ir	nfrastructure and facilities	185
13. E	xpenditure pattern	
13.1	Capital expenditure	
13.1.1	1 Plant and machinery	194
13.1.2	2 Land & building cost	195
13.2	Operating expenditure	195
13.2.1	1 Variable operating expenditure	195
13.2.2	2 Fixed Operating expenditure	196

14. Fi	nancial analysis	202
14.1	Key assumptions	202
14.1.1	Income assumptions	202
14.1.2	Project cost and financing	208
14.1.3	Other financial assumptions	209
14.2	Working capital and cash flow statement	210
14.3	Income & expenditure statement	213
14.4	Balance sheet	215
14.5	Profitability	216
14.6	Sensitivity analysis	217
15. Er	nvironment, health and safety	220
15.1	Environment	220
15.1.1	Air emissions	220
15.1.2	2 Wastewater and liquid wastes	221
15.1.3	Waste water management	224
15.1.4	Solid waste management	226
15.2	Occupational health and safety	227
15.2.1	Monitoring	228
15.2.2	2 Monitoring accidents and diseases monitoring	229
15.3	Addressing potential EHS issues	229
15.3.1	Construction phase	230
15.3.2	2 Operation and maintenance	235
15.3.3	8 Manufacturing	236
15.4	Provisioning of site services	240
15.4.1	Fire alarm and firefighting system	240
15.4.2	2 Rain water harvesting	242
15.4.3	8 Water treatment plant	243
15.4.4	Sewage treatment plant	244
15.4.5	Ventilation system	244
16. K	ey risks and mitigation	247
17. Co	onclusion	255
18. A	nnexure	258
18.1	Checklist for social screening for establishment of new TCs	258
18.2	Checklist for environmental assessment	261
18.3	Budgetary estimates of some machines	269
18.4	Key questions asked during telephonic discussions	271
18.5	List of MSMEs/other manufacturers contacted in primary survey	273

18.6	Key discussion during primary survey	. 278
18.7	AICTE norms for engineering and technology institutes	. 280
18.8	Key large units in the region	. 288
18.9	Specification of tools	. 293
18.10	Non-Incumbency certificate in respect of land	. 294
18.11	Profitability - Alternate scenario	. 295
Referenc	ces	. 296

List of Figures

Figure 1: TCSP eco-system	27
Figure 2: Location of existing TRs & TCs	34
Figure 3: Location of Bhiwadi	49
Figure 4: Growth of population in Alwar district	53
Figure 5: Stakeholders of Bhiwadi TC	54
Figure 6: Size of the tooling market in India	62
Figure 7: Structure of tooling market	63
Figure 8: Composition of captive segment	63
Figure 9: Composition of Commercial TRs segment	63
Figure 10: Composition of imports segment	64
Figure 11: Absence of competitive advantage	68
Figure 12: Proximity to automotive cluster	70
Figure 13: Auto clusters at a glance	70
Figure 14: Target market structure of Bhiwadi TC	71
Figure 15: Value chain in the auto industry (Illustrative)	71
Figure 16: DMIC in Rajasthan	78
Figure 17: Kundli-Manesar-Palwal Expressway	80
Figure 18: Agro food parks in Rajasthan	80
Figure 19: Region of influence under DMIC	82
Figure 20: Tooling demand for automobiles	84
Figure 21: Tooling demand for automobiles	85
Figure 22: Automotive product development – key steps	85
Figure 23: Two wheeler market share	86
Figure 24: Typical breakup of tooling requirement- two wheelers	86
Figure 25: Typical breakup of tooling requirement - 4 wheelers/cars	87
Figure 26: Growth of district GDP of Alwar	90
Figure 27: Sector wise composition of district domestic product	91
Figure 28: Proposed organisation structure	. 112
Figure 29: Suggestive framework for marketing of TC	134
Figure 30: Positioning of marketing mix for proposed TC	.135
Figure 31: Key components in 4 wheelers	142
Figure 32: Key components of 2 wheelers	143
Figure 33: Press tool	145
Figure 34: Mould	145
Figure 35: Die casting die	.145
Figure 36: Jig & Fixture	145
Figure 37: Key areas of incubation support	151

Figure 38: Process for Selection of Projects for Incubation at the TC	. 154
Figure 39: Potential areas of collaborations or association with key stakeholders	. 174
Figure 40: TC layout plan	. 192
Figure 41: Net working capital requirement	. 210
Figure 42: Cash flow closing balance	. 210
Figure 43: Net free Cash flows and Cumulative Cash flows	. 216
Figure 44: Net free Cash flows and Cumulative Cash flows alternate scenario	. 295

List of Tables

Table 1: Result indicators of the RFD	32
Table 2: Existing TCs & TRs with focus sectors	33
Table 3: Alwar district snapshot	50
Table 4: Status of power, water, wind and rainfall in the region	51
Table 5: Key suppliers of raw materials	58
Table 6: Prominent financial institutions in the region	59
Table 7: Intake capacity at technical institutions in Rajasthan	59
Table 8: Intake capacity at technical institutions in Alwar catchment	60
Table 9: Composition of major auto players in the catchment and region (NCR)	72
Table 10: Sector-wise spread of MSMEs in key districts	73
Table 11: Catchment area profile	74
Table 12: List of key companies with expected investment in the Neemrana Japanese zone	79
Table 13: New two wheeler launches by top 4 players over 2015-20	86
Table 14: New Launches (small cars and sedans) 2015-2020	87
Table 15: Educational institutions in the district	92
Table 16: Health infrastructure in Alwar district	93
Table 17: Checklist for environmental screening	97
Table 18: Sample monitoring and reporting template	102
Table 19: Clearances required and respective authorities	104
Table 20: Sanctioned strength of key resources	111
Table 21: Summary of phase wise induction of resources	115
Table 22: Department wise induction of fulltime resources	115
Table 23: Roles and responsibilities of proposed positions	117
Table 24: Comparison of Society Registration Act and Companies Act	126
Table 25: Governing Council of Bhiwadi TC	129
Table 26: Suggestive marketing activities, ownership and timeline	138
Table 27: Capability of existing MSME TCs	141
Table 28: Requirement of machines for manufacturing of different automotive parts	146
Table 29: Budgetary cost of machines	147
Table 30: Proposed list of machines for production/ manufacturing activities	148
Table 31: Proposed list of machines for incubation centre	154
Table 32: Details of specialisation, courses, duration and capacity intake	156
Table 33: Details of courses	159
Table 34: Proposed list of machines for training	165
Table 35: Areas of consulting and estimated revenue	169
Table 36: Proposed areas of consulting	170

Table 37: Estimated revenue from consulting	170
Table 38: Potential areas of collaborations and association with key stakeholders	175
Table 39: Indicative certifications of quality systems	182
Table 40: Details of proposed infrastructure	186
Table 41: Details of proposed infrastructure for hostel	188
Table 42: Cost for development of campus infrastructures	189
Table 43: Details of other infrastructure	189
Table 44: Capital expenditure	194
Table 45: Plant & Machinery	194
Table 46: Land & building cost	195
Table 47: variable cost assumptions	196
Table 48: Fixed Operating Cost assumptions	197
Table 49: Manpower and salary assumptions	198
Table 50: Key assumptions	202
Table 51: Production assumptions	202
Table 52: Training revenue assumptions	204
Table 53: Consultancy revenue assumptions	207
Table 54: Project cost and financing	208
Table 55: Working capital schedule	211
Table 56: Cash flow statement	212
Table 57: Income and expenditure	213
Table 58: Balance sheet	215
Table 59: Profitability with investment plant & machinery	216
Table 60: Sensitivity of IRR	217
Table 61: Activities and anticipated EHS issues during construction phase	230
Table 62: Potential hazards during O & M phase	235
Table 63: Potential hazards during manufacturing phase	236
Table 64: Risk & mitigation	247
Table 65: Profitability with investment plant & machinery under alternate scenario	295

Executive Summary

Executive summary

The proposed Technology Centre (TC) under Ministry of MSME's Technology Centre Systems Programme (TCSP) at Bhiwadi in Alwar district of Rajasthan will play an important role in enhancing the competitiveness of MSME units in the region. It will focus on improving access to technology, providing skill up-gradation and offering advocacy support to the MSMEs with high growth potential.

Bhiwadi is strategically located between Delhi and Jaipur within the National Capital Region. It has been identified as an investment region under DMIC and a number of mega industrial projects are coming up in this region. Bhiwadi scores high on the location attractiveness index¹. Moreover, Bhiwadi and the region around it have presence of several Global Auto giants and tier 1 & 2 OEMs. Hence, a General Engineering TC with focus on Auto sector is proposed to be developed at Bhiwadi. This is also based on discussions with O/o DC-MSME and domain experts, major firms in the region and analysis of publicly available data.

The objective of this DPR is to evaluate feasibility of the proposed new MSME TC at Bhiwadi. This includes assessment of the market need in the region, requirement of technology and skillset, requirement of investment and regulatory approvals etc. for developing a green field TC at Bhiwadi. This DPR has been prepared in consultation with relevant stakeholders including O/o DC-MSME, Government of Rajasthan RIICO, OEMs, Tier I & II suppliers, Bhiwadi Manufacturers Association (BMA), industry associations, Government Institutes and ancillary units in the region.

STAKEHOLDER DISCUSSION: Discussions with various stakeholders were carried out to develop a better understanding of the requirements and expectations from the proposed Technology Centre. Market opportunity assessment was undertaken to understand the tooling demand in automobile sector across segments in the various stages of manufacturing. Leading players were consulted in the Bhiwadi region to discuss and understand the sector and gain insights with respect to the tooling requirements during the preparation of the DPR. Also several brainstorming sessions were carried out with the O/o DC-MSME, World Bank and domain experts in order to identify the focus sectors for the proposed TC. Also, a workshop with Bhiwadi Manufacturers Association was organised in which representatives from more than 50 key industries within Bhiwadi participated. Their suggestions and views were also taken into consideration during the preparation of this DPR.

¹ Location attractiveness index is a measurable index that compares different locations on the basis of multiple parameters estimating the attractiveness of those locations, in relative terms with other locations in the index (details can be referred in Section 3).

OPPORTUNITY ASSESSMENT: The auto ancillary segment has seen large scale investments and Rajasthan has become a prominent base for auto manufacturing with the establishment of a growing auto cluster in Alwar district.

- Bhiwadi region is spread over approx. 5,300 acres and comprises of 3 industrial areas -Bhiwadi, Chopanki and Khushkera
- A special auto & engineering zone has also been developed in the Pathredi industrial area and another special zone is being planned

The market opportunity for this region has been assessed with respect to three major areas including market in core sectors in the catchment, market in other potential sectors (incl. processing, sheet metal components, plastic components, engineering components etc.) in catchment and market outside catchment area.

SOCIAL AND ENVIRONMENTAL SCREENING: For the proposed TC, environmental and social screening has been conducted to address the risks at the very beginning of designing and conceptualizing the implementation. Also preparation and implementation of a Gender Equity and Social Inclusion Plan (GESIP) during operational phase with particular emphasis on inclusion of young women as well as those who belong to weaker and underprivileged sections of society has been proposed.

FOCUS AREA FOR THE TC: The tooling requirement for the automobile industry (two wheelers & four wheelers/cars) primarily can be divided into four categories: plastic moulds, pressure-die casting, sheet metal and forging tools. Sheet metal and plastic mould in automobiles comprise majority of the tooling requirement and would be the focus areas for the TC.

(A) Production

The requirement of sheet metal dies for passenger cars is categorised as small, medium and large. Existing commercial tool rooms and MSME TCs in India have enough capacity to develop small size sheet metal tools. There are commercial and captive TRs catering to mid-size sheet metal tooling. As per industry estimates, around 60% in this segment are imported from countries like Korea, Taiwan and China. However, capacity is almost non-existent in large size sheet metal tooling. Considering the volume in the big size tooling

market, the viability to develop capacity in India isn't feasible at present. Therefore, it is proposed that the new TC should focus on mid-size sheet metal tooling.

Similarly, plastic moulds are another major area of tooling in two and four wheelers. Plastic moulds (mainly small size) and pressure die casting together comprise majority of the tooling requirement for two wheelers.

Addressable tooling market for 2 & 4 wheelers during 2015-2020 is expected to be around INR 2,800 – 4,100 Cr & INR 19,500 Cr respectively²

The importance of sheet metal and plastic mould tooling requirements in four and two wheelers has also been further validated during various discussions carried out by our experts and team with various stakeholders in this region.

Since, the Bhiwadi region has concentration of two and four wheeler units like Maruti, HSCIL, HMSI, Ashok Leyland, Eicher, JBM, Shriram pistons & rings, Motherson Automotive Tech & Engineering etc; hence it was narrowed down for development of an auto TC focussing on medium size sheet metal work and small size plastic mould work.

(B) Training

The TC will provide professional training in various courses with focus on auto and general engineering. The TC will contribute towards skilling youth (around 17,000 to 18,000 trainees in next five years) to make them employable in industry by designing courses relevant to them. Major specialisations includes: Tool making and metal cutting, Maintenance, CNC Manufacturing, CAD/ CAM, Advance Welding, Car/bike service training, Information Technology, Industrial and process Automation.

(C) Consulting

Going forward, revenue is proposed from consultancy / advisory streams including support to MSME clusters in technology and engineering solutions and for improvement of their quality systems and productivity. The TC will have a dedicated professional wing to assist MSMEs in the field of tool design, manufacturing, quality/ productivity improvement and innovation.

(D) Other Areas

² Source: Based on discussion with industry experts and commercial TRs, EY analysis

The objective of the proposed TC is to provide support to commercial TRs and MSMEs. For this in addition to the above mentioned areas, the TC will also form consortium with MSMEs including commercial TRs to jointly cater to the focus sectors, provide incubation support to trainees for their start-up ventures and form Productivity and Quality club for cluster of engineering industry and support them.

To achieve these goals the TP and CNM will assist the TC for providing technology support and facilitating market linkages respectively.

5 FINANCIALS: The revenue and cost projections have been made for a period of 10 years. The total capital expenditure for the proposed TC is estimated at about INR 12,912 lakhs. The capex includes expenditure towards plant & machinery, development of civil and other associated infrastructure. The project will be funded through a grant from Government of India sourced through World Bank Ioan and equity funding from MoMSME. The revenue is projected to grow from INR 250 lakhs in 2017-18 to INR 3,287 lakhs by year 2025-26. The overall project internal rate of return (IRR) is estimated to be 8.6%. The detailed assumptions for revenue/ cost projections and profitability have been provided in section 14.

All the initiatives mentioned above for the proposed TC would not only strengthen the expertise of MSMEs in manufacturing but also help to develop a sustainable ecosystem for MSMEs in the region in the long run.

Introduction

1. Introduction

1.1 Background and project rationale

India is one of the largest and dynamic emerging markets with vast economic potential. India's GDP in 2012 was USD 1.8 Trillion ranking 10th amongst all countries³. The objective of the Government of India's, 12th Five-Year Plan (FY2013–17) is to return to GDP growth rates in excess of 8 percent, with strong emphasis on the manufacturing sector. Manufacturing has long been recognized as an essential driver of economic development for most countries, as it has an important economic and employment multiplier effect. The manufacturing sector will have to play an important role to take Indian economy to a high growth rate trajectory and achieve the planned objectives. Micro Small and Medium Enterprises play an essential role in the overall industrial economy of the country and account for over 45% of India's manufacturing output⁴.

Despite strong potential, India's manufacturing performance has not been encouraging. The share of manufacturing in India's GDP has stagnated at around 16 percent⁵, compared to more than 30 percent (and growing) in some of the other Asian countries. India's manufacturing sector has been facing challenges, such as low value addition, low productivity, and less-than-desirable up scaling. However, world-class production units that compete in the international market are also present in India e.g. automotive sector.

The major constraints in the growth and competitiveness of India's manufacturing sector are:

- access to finance (especially for MSMEs)
- access to technology and skilled manpower
- access to markets (domestic & export)
- ► infrastructure deficiencies

These constraints impact the competitiveness of MSMEs operating in both upstream and downstream manufacturing industries.

Upstream industries, such as the tooling industry, which consists of developing and manufacturing of dies, moulds, casts, as well as testing and prototyping, serves as an interface between product design and product manufacturing. The right tools help increase throughputs, reduce material waste, improve product quality, time to market and thus improve competitiveness. The importance of the tooling industry increases with accelerating technological developments, product sophistication/ innovation/ customization and reducing time to market. Tooling is a specialized but local industry (more than 60 percent of tools in the world are locally produced and consumed –

³ http://unstats.un.org/unsd/snaama/dnltransfer.asp?flD=2

⁴ http://www.dnb.co.in/Nashik2013/PDF/MSMEsInIndia.pdf

⁵The Manufacturing plan - Strategies for accelerating growth of manufacturing in India in the 12th Five Year Plan and beyond, Planning Commission

including in India) dominated by MSMEs (more than 80% of firms in India, Europe, US and Japan). Like other countries, the private tooling industry in India has grown hand in hand with the manufacturing industry. The turnover of the Indian tooling industry is approximately INR 13,000 crores, with more than a thousand firms employing over 120,000 workers (TAGMA 2011). The constraints to the growth and competitiveness of the Indian tooling industry mirror the ones affecting manufacturing as a whole, as articulated above. The scarcity of skilled workers and problems related to their retention, as well as the lack of access to a high-quality design and prototyping facility has hurt growth.

In downstream industries such as automotive, electronics, fragrance and flavours, glass, leather, toys etc., there is shortage of skilled labour and limited access to advanced technologies. These industries include large numbers of MSMEs, often working as part of supplier networks of larger enterprises and subject to increased international competition.

1.1.1 Demographic overview and challenges

While India stands to benefit from an immense demographic dividend, with the largest youth population in the world (around 66 percent of the total population is under the age of 35), it has an overall employment rate of 4.7 percent (under usual principal status approach) and an overall labour force participation rate of 50.9 percent⁶. For the country to gain from this demographic dividend, skilling and up-skilling its youth are key priorities for the Government of India (Gol).

India has a labour force of about 470 million, of which less than 10 percent have received skills training, either through formal or informal means⁷. About 13 million young people enter the labour force annually. Despite the huge expansion of skills training provision during the 11th Five-year plan, the country's skills development system requires massive up scaling. In its 11th and 12th Five-year plans, India recognized that skill development is critical to achieve faster, sustainable and inclusive growth on one hand, and to providing decent employment opportunities to the growing young population, on the other. According to the National Skill Development Policy published in March 2009, India has set a target of skilling 500 million people by 2022⁸. This program will play a bigger role in the country's plan by setting a target of skilling 150 lakh people within the next 6 years.

Global experience shows that a workforce with higher schooling and skill levels leads to higher productivity and personal income. A 2011 study showed that students who attended three-year vocational training courses at ITIs earned 25 percent more than two-year course students, who

⁶ Report on the Third-Annual employment & unemployment survey (2012 – 2013) of the Ministry of Labor, Government of India.

⁷ 11th and 12th Five Year Plan

⁸ http://labour.nic.in/upload/uploadfiles/files/Policies/NationalSkillDevelopmentPolicyMar09.pdf

earned 14 percent more than did one-year course students⁹. These results were also observed in a 2007 study showing that the returns on vocational training in India have been found to be 8 percent, almost equivalent to the 8.4 percent related to an additional year of education. The same study showed that, increased educational attainment by one year is associated with 5.8 percent higher firm-level productivity in India¹⁰.

1.1.2 Country's manufacturing objectives

Development of Indian manufacturing sector calls for deepening and recalibrating of economic reforms that would strengthen the sector and make it grow faster and become an engine of inclusive growth. To realize the potential of the manufacturing sector, Government of India has announced National Manufacturing Policy in 2011 with the objective of enhancing the share of manufacturing in GDP to 25% within a decade and creating 100 million jobs. It also seeks to empower rural youth by imparting necessary skill sets to make them employable. Sustainable development is integral to the spirit of the policy and technological value addition in manufacturing has received special focus.

The National Manufacturing Policy has six objectives:

- Increase manufacturing sector growth to 12-14% over the medium term to make it the engine of growth for the economy. The 2 to 4 % differential over the medium term growth rate of the overall economy will enable manufacturing to contribute at least 25% of the National GDP by 2022.
- Increase the rate of job creation in manufacturing to create 100 million additional jobs by 2022.
- Creation of appropriate skill sets among the rural migrant and urban poor to make growth inclusive.
- Increase domestic value addition and technological depth in manufacturing.
- Enhance global competitiveness of Indian manufacturing through appropriate policy support.
- Ensure sustainability of growth, particularly with regard to the environment including energy efficiency, optimal utilization of natural resources and restoration of damaged/ degraded eco-systems.

⁹ Vocational Training in the Private Sector (Goyal 2011)

¹⁰ The Knowledge Economy and Education and Training in South Asia (World Bank 2007)

1.1.3 Recommendations of XII plan Working group & Parliamentary Standing Committee

At present, the Office of Development Commissioner [O/o DC (MSME)], Ministry of Micro, Small and Medium Enterprises, operates 10 TRs and 8 TDCs (both hereinafter called as TCs) spread across the country. The TCs have been providing technical and vocational training programmes to more than 1,00,000 trainees annually including AICTE and NCVT approved certification. They also provide design and manufacturing support to entrepreneurs alongside technical consultancies. The TCs primary focus is to improve access to advanced technologies & provide technical advisory support to entrepreneurs and workers, as well as opportunities for technical skill development to the youth at varying levels.

Considering the performance of existing TCs, the Department related Parliamentary Standing Committee on Industry, in its 235th report submitted to Rajya Sabha on 4 May 2012 have recommended as follows:

- "The committee is impressed with the performance of the TRs established by the MSME Ministry. These enable the youth to improve their skills and get employment opportunities. The success of such TRs inspires confidence that establishment of more such institutions will equip the young people with necessary ability useful in the expanding market and manufacturing sector".
- ii) "The Committee strongly recommends that more money must be allocated for establishment of TRs across the country. It is understood that MSME Ministry is also approaching the concerned organizations within Government to get loan from International Financial Institutions. If Planning Commission and Finance Ministry cannot allocate more funds for this purpose, the necessary permission to MSME Ministry to get access to borrowings from international banks may be given without delay. However, it is strongly recommended that we must use our own resources for this cause, which is good for the youth of our country and MSME sector".

The evaluation of existing ten TRs was undertaken under GIZ-MSME Umbrella Programme during 2011. The experts have appreciated the performance of the existing TCs and have recommended expansion of skill development activities and introduction of newer technologies in the TCs.

During the budget speech of 2013-14, following announcement was made;

Para 75: "TRs and TDCs set up by the Ministry of MSME have done well in extending technology and design support to small businesses. I propose to provide with World Bank assistance, a sum of Rs 2,200 crore during the 12th Five Year Plan period to set up 15 additional Centres".

In pursuance of (i) the announcement made in the Budget (2013-14), (ii) the recommendations of the Department Related Parliamentary Standing Committee on Industry in its 235th Report submitted to Parliament (Rajya Sabha) on 4 May 2012, and (iii) the recommendations of the experts after evaluating the performance of existing TCs, it was proposed to implement "Technology Centre Systems Programme (TCSP)" at an estimated project cost of INR2,200 crore including World Bank assistance of USD 200 million by setting up 15 new TCs and to modernize / upgrade existing TCs by introducing latest machinery / technologies.

1.1.4 Technology Centres Systems Program

The Technology Centres Systems Program, a national program, seeks to enhance the technological and skill base of MSMEs in selected manufacturing industries, via upgraded and new TCs (currently called TRs and TDCs). The TCs will have as their mission to improve the competitiveness of MSMEs across India – with a strong emphasis on low income states.

This will be achieved by providing an integrated suite of services to MSMEs on a fee basis, ranging from providing them access to technology, access to skills and access to business advisory services. TCSP will reinforce the technical capability of the TCs as well as their performance, by further increasing the participation of the private sector in key decisions at both the national and local levels.

The TCs will support industry clusters across manufacturing value chains, both upstream (tooling industry) and downstream (key industries exposed to global competition close to the technology frontier, such as the automotive and electronics sectors, as well as industries evolving through indigenous innovations, such as fragrance and flavour, glass, leather, toys etc.).

TCSP's Program Development Objective has been defined to enhance the competitiveness of MSMEs by improving their access to technology and business advisory services as well as skilled workers through systems of financially sustainable TCs. The program seeks to establish 15 new TCs and upgrade capabilities of select existing TCs and develop linkages between MSMEs, Indian and international research institutes and leading manufacturers. This would include upgradation in technology, land and building infrastructure and other associated infrastructure of the TC. The program will connect leading practices contributing to advance technology, knowledge, skilling and innovation which can be transferred to MSMEs served by each TC.

The competitiveness of MSMEs is impacted by various factors such as entrepreneurial drive of the leader, market and customer dynamics, their access to technology, finance & business advisory and availability of skill manpower. The TCs will shape the outcomes of the program by providing MSMEs access to technology, business advisory and skilled manpower. So it would be possible to measure the success of this program by measuring the offtake of these paid services of the TCs by MSMEs. Therefore, the key indicators that will be measured are;

- > Number of enterprises paid for services rendered including placement services
- Number of long term trainees employed by industry, including MSMEs, within six months after being trained at TCs
- TCs' gross profit before depreciation (not including land)
- Access to Technology
 - Revenue of TCs from access to technology activities (production support and consultancy)
 - Capacity utilization of TCs machines
 - Number of technology strategies/roadmaps developed by TPs and endorsed by Industry Associations and IC
- Access to Skilled Workers
 - Number of trainees trained (direct program beneficiary)
 - external trainers trained
 - with newly developed contents
 - female
 - from low income states
 - from disadvantaged section of society (SC/ST)
 - Number of skills development contents (e.g. curricula, standards, certification schemes) developed and adopted by industry associations, and/or certifying agencies
- Access to Business Advisory
 - Number of needs assessment and related business plans developed by CNMs and endorsed by Industry Associations
 - Value of TCs' businesses generated with support of Cluster Network Managers

In addition, intermediate result indicators are designed to monitor critical progress towards

achievement of the PDO with primary emphasis on markettested outputs of the TCs supported by Technology Partner and Cluster Network Manager. Examples of such indicators include capacity utilization of machines, number of trainees trained, access to services by MSMEs, number of technology strategies / roadmaps developed by TPs and endorsed by industry associations and value of TCs' businesses generated with support of CNMs.

This program will create an ecosystem to help MSMEs become more competitive by acquiring improved technology and employing better skilled workers. This will be done directly Figure 1: TCSP eco-system

through the services provided to them by the TCs, as well as indirectly through the linkages with larger firms (e.g. as part of the supplier network of an OEM), which will provide access to the

services of the TCs under the condition that it benefits their suppliers. The TCs will contribute by providing inputs to MSMEs on manufacturing technology & business advisory and by improving the skills of workers/ skill seekers for better employment opportunities. The program will therefore benefit the Indian MSMEs, students and workers and help establish systems of TCs in the country wherein each centre will gain from the specialisation and experience of the others and improve the competiveness of MSMEs.

1.1.5 Key TCSP stakeholders

TCSP has multiple stakeholders who will need to work together to achieve the objective of enhancing the competitiveness of MSMEs by improving their access to technology and business advisory services as well as skilled workers through systems of financially sustainable TCs. The key players who will participate in the program include:

MSME Units - Beneficiaries

MSME units will be the prime beneficiaries of the program and the overall objective of the program centres around providing them with access to modern technology, access to business advisory services and access to skilled workforce.

Skill seekers

Workers, job and skill seekers will also gain from this program with access to short term and long term training/skill development courses that will help job seekers to improve their career prospects and finding livelihood.

Office of Development Commissioner, Ministry of MSME (DC-MoMSME)

The program would be designed and implemented under the aegis of the O/o Development Commissioner MSME, Government of India. O/O DCMSME has the mandate to support MSMEs and TCSP will serve this towards this purpose.

Technology Centres

The TCs will serve MSMEs with integrated suite of services on a fee basis, ranging from providing them access to technology, access to skills and access to business advisory services. The program will focus to upgrade selected existing TCs and development of 15 new TCs that support or will support industry clusters across manufacturing value chains, both upstream (tooling industry) and downstream (key industries exposed to global competition close to technology frontier, such as automotive electronics, as well as industries evolving through indigenous innovations, such as fragrances and flavours, footwear, glassware, toys etc.).

Collaborations with Industry associations, academia, applied research institutes and others

Strategic collaborations between TCs and various other organizations will be critical to foster research and development, business incubation and strengthen the TCs with regard to manufacturing services, business advisory and training capabilities. These include:

- Regional / sectorial industry associations representing MSMEs
- Regional / national level engineering/ academic / vocational training institutions
- Applied research institutes
- Local regional colleges
- Autonomous institutes such as IISc, CSIR
- Academia

Leading practices from around the world for similar program suggest and underscore the importance of establishing such linkages. In the Indian context, there are many research oriented projects and concepts that can provide competitive advantage to Indian industry once the early state research emanating from applied research institutes and academia can be validated and implemented at the TC through such collaborations. The TCs will provide a unique environment of bringing the country's leading academics, engineering and industry professionals together to develop and demonstrate new technologies on an industrial scale. This will allow the clients of TCs to develop new manufacturing processes in a safe, neutral setting, reducing the associated financial risks.

Program Management Unit (PMU)

Role of PMU is to assist the O/o DC MSME in designing and implementing this program. This includes developing framework for identifying sites/sectors for the new TCs, developing detailed project report, support in procurement of services and EPC contracts; developing and implementing environment and social safeguards, monitoring and evaluation, manage the roll out of the national portal, deployment of subject matter expertise and overall program management for TCSP over 6 years. EY LLP has been selected as the PMU for the TCSP by the O/o DC MSME via competitive bidding as per World Bank guidelines.

Technology Partner (TP)

Role of TP is to help enhance the supply side of the TC by augmenting the technologies at the TCs, assist in their capacity building with respect to the identified technologies and clusters and provide greater support to the services being offered to the MSMEs by the TCs. These services include being exposed to the potential impact of new and relevant technologies, learning how to use new technologies/equipment, providing access to cutting-edge equipment, developing and testing new products, consultancy, training and deploying efficient techniques and practices that improve the competitiveness of the MSMEs being served.

Cluster Network Manager (CNM)

CNMs for each System (or sub System) of TCs will specialize on specific geographic cluster(s)/ industry(s). The CNM will build capacity of the TC to enhance economic development cooperation amongst key stakeholders to improve the competitiveness of the cluster. This will include strengthening market linkages of the TCs with the MSMEs in the cluster it serves, trade and industry associations, academia, educational institutions, applied research institutions, service providers, other government support institutions, workers and skill seekers.

The CNM would seek to increase competitiveness of supply chains of large firms by enhancing quality, reliability and productivity of MSME suppliers by offering services of the TC, thus also helping in meeting revenue targets of the TC. The CNM will enhance the competitiveness of the cluster business environment by establishing a network of service providers which will address the needs of the MSMEs not served by the TC e.g. access to a network of financial services. The CNM will also facilitate closer cooperation between the TC and MSMEs with key innovation stakeholders such as applied research institutes, autonomous institutions such as IISc, CSIR, academia, skill seekers, and students etc. to enhance product and process innovation. TC's capacity will be further enhanced through closer cooperation amongst skills development and labour market stakeholders to increase the number of workers/ trainees from TCs finding long term employment to improve their livelihood.

National Portal Service Provider (NPSP)

Role of NPSP is to design, develop, set-up, operate and maintain the IT platform for MSMEs. The IT platform will act as a common platform for services that will be required by an MSME from the start of their business, to successful operations and closure e.g. access to regulatory services for entrepreneurs, assistance for financing, access to list of suppliers etc. The platform intends to extend the reach of the program to its remote beneficiaries well beyond the TCs' physical location through access to e-learning solutions, B2B service and product market place, e-recruitment, assistance for financial services and e-governance services (forum to address grievances, automation of customer facing operations of the O/o DC MSME) on paid basis.

Construction Management Consultant

The Construction Management Consultant (CMC) shall be responsible for design, supervision of work and final closure of construction works for the TC. CMC will prepare concept plans and subproject appraisal reports, carry out contract planning and detailed engineering designs, prepare schedules of quantities and specifications. It will support the PMU in preparation of procurement packages, bid documents, invitation, receipt and evaluation of bids etc. CMC will supervise the construction, manage the contract, monitor construction activities and will certify contractor's

progress claims, carry out quality control, testing, and prepare progress and monitoring reports, and certify bills.

1.1.6 RFD of TCSP

TCSP's objective is to enhance the competitiveness of MSMEs by improving their access to technology, business advisory services as well as skilled workers through systems of financially sustainable TCs. For monitoring the program outcomes, RFD has been defined; which contains the results indicators at the PDO level and intermediate outcome level together with the baselines and targets over the life of the program. Intermediate results indicators are designed to monitor critical progress toward achievement of the PDO with primary emphasis on market-tested outputs of the TCs and other stakeholders of the TCSP (viz. TPs, CNMs and ITP service provider).

Active participation of General Manager of TCs will be essential for steering the operationalization of TCSP in line with the envisioned mandate. The key success parameters of the General Manager include:

- Revenue earned by respective TC from,
 - Production
 - Training
 - Consultancy and others
 - Business given to private tool rooms
 - Production/training/consultancy with the help of CNM (territory/sectors to be identified Jointly by CNM and TCs in advance)
- Recovery ratio--Revenue/ recurring expenditure (cash) in percentage
- Profit before depreciation
- Profit after depreciation
- No. of trainees trained in Long term & Short term training programme
- No. of courses identified which are suitable for women employment & courses designed and started (CNM to assist the identification of courses and TP to design)
- No. of units assisted , out of which how many are MSMEs
- > Present technical papers showing successes delivered and how it has aided industry
- Technical incubation centre to start and the long term trainees to be encouraged to register for starting enterprises

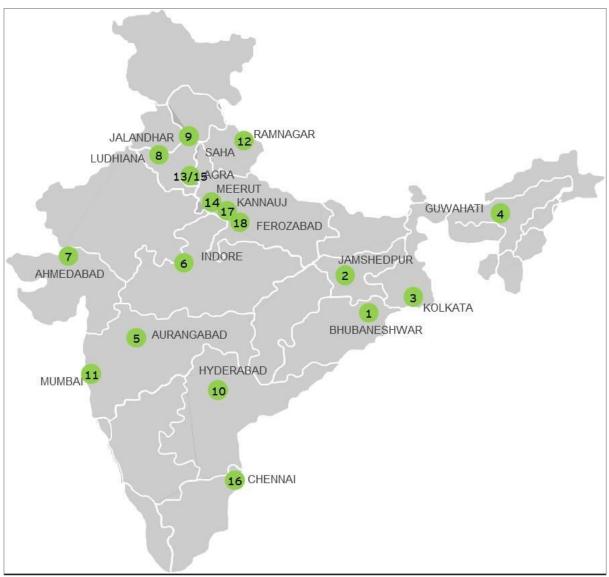
The table below depicts the snapshot of result indicators which form a part of the RFD.

Table 1: Result indicators of the RFD

Program development objective indicators		<u>*</u> *	Number of enterprises paid for services rendered including placement services				
		M	Number of long term trainees employed by industry, including MSMEs, six months after graduating from the TCs				
		~	TCs' gross profit before depreciation (not including land)				
Intermediary Results							
Component 1- Technical assistance to the existing and new TCs	Access to Technology	\$ \$	TCs revenue from access to technology activities (production support and consultancy)				
		Q	Capacity utilization of machines in TCs				
		-\	No. of technology strategies/roadmaps developed by TPs and endorsed by industry associations and IC				
	Access to Skilled workforce	İ İİ	Number of trainees trained (direct program beneficiary)				
		ſ	Number of skills development contents (e.g. curricula, standards, certifications) developed and adopted by industry associations, and/or certifying agencies				
	Access to Business Advisory	₽	Number of needs assessment and business plans developed by CNMs and endorsed by Industry Assocs.				
		3	Value of TCs' businesses generated with support of Cluster Network Managers				
		in the second se	Number of users of IT Platform				
Component 2-Investments to upgrade existing and develop new TCs			Number of new TCs built				
Component 3-Technical assistance to MoMSME			Establishment of PMU for program implementation and capacity building of MoMSME				

The program aims to have direct and indirect industrial and economic outcomes to the country, such as enhanced manufacturing competitiveness, improvement in the overall employment rate and increased GDP growth.

1.2 Overview of existing MSME TCs


Out of the currently operational 18 Technology Centres (TCs) & Tool Rooms (TRs), 10 are for the tooling industry and 8 are for other industries such as ESDM (electronics system design and manufacturing), glass, footwear, and fragrance and flavour and sports. Half of these eighteen TCs are located in low income states (Uttar Pradesh, Madhya Pradesh, Odisha, Jharkhand and Assam). The TCs are self-sufficient institutions that provide design support, training, manufacturing, testing & calibration and consulting services to MSMEs and other enterprises. They have created a niche in the market in various fields such as hand tools, plastics, automotive, testing & calibration etc. The list of the existing TCs & TRs along with their specializations is given below:

SN	Name	Focus Sector
1	Central Tool Room & Training Centre (CTTC), Bhubaneswar	General engineering
	(Odisha)	(Precision components)
2	Indo Danish Tool Room (IDTR), Jamshedpur (Jharkhand)	General engineering (Auto
2		components)
3	Central Tool Room & Training Centre (CTTC), Kolkata (West	General engineering
5	Bengal)	
4	Tool Room & Training Centre (TRTC), Guwahati (Assam)	General engineering
		(Training in tool making)
5	Indo German Tool Room (IGTR), Aurangabad (Maharashtra)	General engineering (Auto
		components)
6	Indo German Tool Room (IGTR), Indore (Madhya Pradesh)	General engineering (Auto
		& Pharma)
7	Indo German Tool Room (IGTR), Ahmedabad (Gujarat)	General engineering (Auto
	nindo German Foor Koom (10 m), Anniedabad (Oujarat)	& Plastic tools)
8	Central Tool Room (CTR), Ludhiana (Punjab)	General engineering
9	Central Institute of Hand Tools (CIHT), Jalandhar (Punjab)	General engineering (Hand
		tools)
10	Central Institute of Tool Design (CITD), Hyderabad, (Andhra	General engineering &
10	Pradesh)	ESDM
11	Institute for Design of Electrical Measuring Instruments	ESDM and tool making
	(IDEMI), Mumbai, (Maharashtra)	
12	Electronics Service & Training Centre (ESTC), Ramnagar	ESDM
	(Uttarakhand)	
13	Process and Product Development Centre (PPDC), Agra	Foundry and forging
	(Uttar Pradesh)	

Table 2: Existing TCs & TRs with focus sectors

SN	Name	Focus Sector
14	Process cum Product Development Centre (PPDC), Meerut (Uttar Pradesh)	Sports goods
15	Central Footwear Training Institute (CFTI), Agra (Uttar Pradesh)	Leather & footwear
16	Central Footwear Training Institute (CFTI), Chennai (Tamil Nadu)	Leather & footwear
17	Fragrance and Flavour Development Centre (FFDC), Kannauj (Uttar Pradesh)	Fragrance & flavours
18	Centre for Development of Glass Industries (CDGI), Firozabad (Uttar Pradesh)	Glassware

Figure 2: Location of existing TRs & TCs

Several of these were set up through support from German and Danish Government under bilateral agreements as well as with the UNIDO. These TCs are largely self-sustaining entities that provide technical and vocational training programs to more than 1,00,000 trainees annually. Some of these include training programs certified by the AICTE and NCVT. They also provide design and manufacturing support to entrepreneurs alongside technical consultancies.

The existing TC's, were set up between 1967 and 1999, with primary focus on improving access to technologies and providing technical advisory support for entrepreneurs in the given industry cluster they serve. These TCs also serve workers and youth by offering opportunities for hands-on technical training and skill development in varied specialisations with a view to improve employability and livelihood opportunities.

The key services offered by the TCs include:

- Design & manufacturing
 - Product Development
 - Design & Manufacturing of tools, dies, moulds, precision tools
 - Process Development & Improvement
- Skill development
 - Conduct long & short term training programs in the areas of CAD, CAM, CNC, automation, RPT, mechatronics, glass design, shoe design, aromatherapy etc.
 - Offers customised programs for industries

The education level of the participating students ranges from school drop outs to 10th/12th/ITI/diploma/degree holders

- Consultancy
 - Process and Product Improvement
 - Automation solutions
 - Quality Systems support
 - Turnkey assignments
 - Course curriculum developments

Over the last few years, financial performance of the TCs has markedly improved. Most of them have experienced strong revenue growth (mostly due to training activities) and have achieved financial sustainability (before depreciation and land costs and few TCs even after depreciation). Based on the recent reports and financial analysis, following are some of the key observations:

- High profitability in recent years: There has been an improvement in recovery ratio of these TCs, thus allowing them to progress towards their self-sustainability mandate. Majority of them have become profitable in the last three years.
- Skew towards training: Training and skill developed services have been a key revenue sources for the TCs. The scope of manufacturing needs to be up-scaled to achieve a balance in operations and revenues from each TC. Ideally, revenues should be balanced between the two main sources of income for the TCs. Only IGTR Aurangabad is found to be closely balanced. CITD Hyderabad and CTTC Kolkata, although profitable, need to perhaps enhance their production activities.
- Focus of production activities is more towards job work or component production: It was found that the utilisation of machines in the production area was focused on component production and facilities for designing, die casting or tooling were not being fully utilized. CTTC Bhubaneswar and IDTR Jamshedpur focus on component production while CTR Ludhiana on job work and IGTR Indore and CTTC Kolkata on jigs and fixtures. Only IGTR Aurangabad and CITD Hyderabad were found to focus on specialization in production, including designing, such as die casting and sheet metal or press tooling.
- Training capacity is well utilized: As reflected in the sources of revenue generation, the scale of training activities has been growing. All TCs initially reviewed, demonstrated an increase in training numbers from 2011-12 to 2012-13. The highest increase was observed at IGTR Ahmedabad. Although this is a positive trend, the staffs at these TCs needs to focus on production and maintain a balance between these two activities, while also up scaling other activities like consultancy and product testing. The centres should also seek avenues for taking advantage of government sponsored schemes and subsequently train more technicians in welding, machining and in automation.

There is a need to replicate the TCs at more places along with technological up gradation, improved training facilities and innovation in the business models etc. This will increase their capacities to train and strengthen the workforce supply. By improving the competitiveness of these facilities, the MSME TCs can be better utilized and expected to produce a bigger footprint in the Indian manufacturing sector.

1.3 Evaluation study of TCs and recommendations of the experts

A study of selected MoMSME TRs in India on 'Strategic Assessment and Recommendations' was submitted under the 'Micro, Small and Medium Enterprises Umbrella Programme'. The purpose of the study was to make comparison of the TRs with international TRs programmes. It is to be noted that these TRs have now been renamed as TCs. An integrated set of ten recommendations have

been made to increase the impact of the TR programme - reducing constraints to manufacturing MSME growth which are as follows:

- Scale up training to meet market demand TCs should train more people. The gap in the supply of advanced manufacturing skills will systematically reduce.
- Support private tooling sector to mature to excellence Besides 10 government TRs, hundreds of private TRs contribute to increased manufacturing MSME competitiveness by providing more complex tools at lower prices.
- Engage in strategic partnerships Partnerships with large manufacturers can help realise large scale opportunities for manufacturing MSME. TCs can benefit from large scale and long lasting demand for services and increased revenue.
- Re-organise "business model" of government TRs- the TCs should function as autonomous business units with increased powers and accountability, increase job enrichment and control over own wellbeing. These teams are likely to become more motivated, innovative, leaner and more responsive to customers.
- Map out the TRs role in the local innovation system TCs can benefit from integration with the local innovation system. Increased opportunity will result from increased stakeholder awareness and support.
- Move away from hierarchy to network governance TCs will benefit from more autonomy which enables them to respond better to opportunities.
- Establish a strategic framework TCs should utilise a coherent strategic framework which clearly articulates programme goals, sound economic development principles and good practices. Revised KPIs should promote sound strategy that result in greater, sustained development impact.
- Establish a strategic facilitation capacity TCs should learn faster to achieve greater development impact. TCs should be at an international level of competitiveness.

Apart from above, several studies have been undertaken by O/o DC MSME in recent years to analyse the technology capabilities and governance framework established at the existing TCs. The key findings from these studies are summarized as follows:

- Technology
 - There is a possibility of improving the overall machine performance by suitable investments in large size milling machines and grinding machines to remove the bottleneck
 - Rationalization and standardization of all manufacturing processes
 - Reduction of in-machine set-up times using zero-point clamping systems and pallets
- Organization
 - Definition of requirements for improving planning and control of the order fulfilment process by developing an electronic planning and control system.

- Training
 - Development of a link between manufacturing competencies and course offerings through the introduction of course offerings that address organizational capabilities and component manufacturing,
 - Establishment of modular course structure for advanced training of industry professionals.

All of the above recommendations are valuable not only for the improvement of the existing TCs but also it serves as an important input for conceptualizing and planning for the new TCs.

DPR Objective and Approach

2. DPR objective and approach

2.1 Objective

Technology Centre in Bhiwadi has been proposed with the underlying fact and review of the catchment area (Gurgaon-Manesar-Bhiwadi-Faridabad-Noida) which has some of the leading auto players and auto ancillary units. Further a number of transformational industrial projects like Delhi Mumbai Industrial Corridor are proposed and the TC can facilitate and support the MSME units coming up across this region. The TC at Bhiwadi will play an important role in enhancing the competitiveness of the MSME Units in the area. TC will focus on improving access to technology, providing skill up-gradation and offering advocacy support to the MSMEs with high growth potential. The long term vision is to ensure competitiveness of the MSMEs in the eco-system by strengthening their linkages to the mainstream manufacturing sector in the region.

The objective of this DPR is to evaluate feasibility of proposed MoMSME TC at Bhiwadi. This includes assessment of the market need in the region, technology and skillset requirement, amount of investment required, construction needed, its layout and subsequent requirements for implementation of the green field TC at Bhiwadi. This DPR has been prepared in consultation with relevant stakeholders including O/o DC-MSME, Government of Rajasthan, RIICO, World Bank, OEMs, Tier I & II suppliers, BMA, industry association, Government Institutes and some ancillary units in the region. This DPR would facilitate the implementation plan of proposed TC at Bhiwadi. Also, a workshop with Bhiwadi Manufacturers Association was organised in which representatives from more than 50 key industries participated. Their suggestions and views were also taken into consideration during the preparation of this DPR.

2.2 Approach

To start with, a comprehensive secondary research was carried out to understand the tooling and technological requirements of the sector and in particular of the Bhiwadi catchment area. To validate the facts, the team performed a detailed primary research was carried out which included meetings with various key stakeholders including O/o DC-MSME, auto units in the catchment and others as explained below.

Discussions with various stakeholders were carried out to develop better understanding of the requirements and expectations from the proposed TC. Leading players were met in this region to discuss and understand the various insights with respect to the tooling & other technological requirements during the preparation of the DPR. Telephonic discussions with some of the key auto component manufacturers and suppliers in the Bhiwadi region (such as Manesar, Faridabad, Gurgaon, Delhi, Noida) were carried out. The objective of this primary research was to understand

their business requirements, issues, challenges, and future requirements to develop a deeper understanding of the requirements that can be served by the TCSP in future.

Based on the outcomes and the results of the discussions, market opportunity assessment was undertaken to understand the tooling & technology demand in automobiles sector across segments across the various stages of manufacturing.

Way forward: Post completion of the DPR for the proposed TC at Bhiwadi under TCSP, the onboarding of 3 main partners would be very much required to achieve the envisaged outcome in the defined time frame.

- Construction Management Consultant For the development of the new facility
- > Technology Partner Procurement of machines and adoption of new technologies
- Cluster Network Manager Marketing the centre an development of cluster with the right mix of products and services

Location Selection for New TCs

3. Framework for selection of industry/ clusters/ systems/ location for new TCs

3.1 Location selection framework

With the objective of establishing 15 new TC's to support industry clusters, there was a need to prioritize and identify high potential growth industries based upon certain selected parameters. Hence, one of the most challenging and critical aspect of the TCSP was selection of the Industry/Clusters/Systems/Locations. This required careful consideration of parameters and consultation with the stakeholders. Preliminary meetings with the O/o DC-MSME were held to discuss the concept and approach. Subsequently three distinct approaches were finalised to identify the locations:

- a) Manufacturing Competitiveness approach: Key idea for this approach was to identify location for TC at a place where it can create the most impact on improving the manufacturing competitiveness. The steps involved were:
 - Listing major manufacturing industries creating value across country
 - Identifying the clusters which can be catalyst to the manufacturing competitiveness for respective industry

One key limitation of this approach is that it will select the clusters which are already established and are among the most competitive across the country, will get shortlisted. A TC at such location will further improve the competitiveness of this location.

- b) Inclusive Growth approach: Approach is based on the assumption that that state which has higher Net State Domestic Product has better growth and hence the states with lower per capita state domestic product should be supported. A TC in such states would become catalyst to improve the manufacturing growth in the state. Following steps were followed:
 - Identification of bottom 15 Low Income states on the basis of per capita Net State Domestic Product¹¹
 - Identification of major manufacturing Industries in the State
 - > Identification of the major clusters for the identified major industries in the state

One of the key drawback of this approach is that clusters identified will not be the most competitive for the industry in the country. It is possible that by investing in a TC at such a location might improve the competitiveness of that cluster but may not make this TC a world class centre.

c) Alignment of Major Economic Projects: As a TC will create value for many years¹² and there are some mega projects in progress which will get completed in 10-15 years. This approach

¹¹ 2011-12 Current prices

aims to incorporate the possible future growth areas on the basis of these mega projects. Considering that such economic growth is based on future development these areas may not get covered in above two approaches. The steps included are:

- Identification of major Economic projects & timelines (which have been ratified by the Government)
- Listing the States & Industries getting impacted
- Identifying the emerging clusters for the top industries

Above three approaches resulted in the first list of many locations. It was important to create a common framework to choose the most appropriate location. In this context "systems approach" was applied. Systems approach takes in to account the presence of entire ecosystem for a TC in the catchment area¹³ and Location Attractiveness Index was created.

A Technology Centre will perform better in achieving its objectives if it is established at a location with better LA Index.

Construct of LA Index:

LA Index Score= Catchment Score * Presence of TC Score

Catchment Score = fx (MSME Unit Score * ITI/PT Score * Presence of Major Firms Score* Presence of Leading Technical Institute Score)

Presence of TC Score= Presence of state/private technology center in the catchment area

Following data prints were captured and analysed:

- Number of MSMEs, Number of ITIs /Polytechnics, Number of Major Firms, Leading Technology Institutes for R&D
- Existence of TCs in the Catchment area (inclusive of DC-MSME, State Government, and Private Tool Rooms)

MSME Units: This reflects the concentration of MSME and it is envisaged that larger the number of units more opportunity for TC to impact the competitiveness.

Number of ITIs/Polytechnics: This reflects the availability of population seeking skill development courses. It has also been observed that students from ITI and polytechnic form a large group of students seeking vocational training at TCs due to lack of such facilities at their respective institutes.

¹² Existing Technology Centers are more than 25 year old.

¹³Catchment Area = District of the location and all neighbouring districts (transcending state boundaries) it is assumed that maximum value creation will be in the immediate surroundings of the Technology Center.

Number of Major Firms: It has been observed that often larger firms take the initiatives to go for technology upgrades and performance improvements. This leads to cascading effect and firm's suppliers, competitors follow up these initiatives in order to stay competitive. If a TC has larger number of such major firms in the vicinity it will have more opportunity to do technology collaborations and thus impact the entire ecosystem.

Leading Technology Institutes: Each TC can play a vital role to establish an Industry- Academia partnership. It has been found that while there are researched ideas available at the academia but they have difficulty in commercializing same. On the other hand the industries are looking for the fresh ideas to improve upon their competitiveness in the market. Unfortunately this linkage does not happen as industry has need of ideas where the proof of concept is ready and unfortunately academia does not goes beyond research. TC can play a role of bridging this gap and create the platform to link industry and academia.

State/Private TC: TC can play a vital role in mentoring and improving the performance of the state government or private sector TCs (tool rooms). If there are such opportunities in the vicinity of the MoMSME TC it can further increase the reach of TC to improve the competitiveness of MSMEs.

				Cate	chment Ar	ea Paramo	eters	Major	Firms	Tech	inst.	Prese state/	
		100			30		20		20		10		20
State	Industry	Location	Net Score	Units	Unit Score	ПІРТ	ITIPT Score	Number	Score	Number	Score	TC of State Govt/ Pvt Tool Room	TC-State Govt/ Pvt Score

The weightages assigned to each parameter were as below:

In order to further refine the list of locations arrived using the above approach, following additional criteria for shortlisting the industries were incorporated:

- Prior experience: These are the sectors where O/o DC-MSME has experience of operating TCs, such as General Engineering, Automotive, Electronics/ESDM, Leather & Footwear, Glassware, Sports Goods, and Fragrance & Flavours
- Concentration of MSME's: These are sectors where O/o DC-MSME has limited prior experience of operating TCs, however there exist a large number of MSMEs in these

industries. Such as Food processing, Textiles (including Handlooms & Handicrafts), Pharmaceuticals, Wood/Paper/Pulp, and Rubber & Plastics.

Emerging Sectors: These are upcoming sectors that may be at the forming stage, but will become major sectors in the near future, such as Bio-technology, Nano -technology, etc.

The sector in which DC-MSME has prior experience have been taken on priority. These sectors are: auto components, ESDM, general engineering, fragrance & flavour, leather & footwear, glass. Later the scope can be expanded to include other sectors pertaining to ministries other than MoMSME, if needed. Such sectors include food processing, pharmaceutical, packaging etc. where presence of MSMEs is considerable.

The list of locations arrived through the above was further refined and finalised with respect to the following additional considerations;

During these discussions additional considerations emerged:

- State Classification: The states were classified into two categories as unserved states and served states. All states of the country were distributed between Un-served states where O/o DC-MSME did not have an operating TC and served states where an operating MoMSME TC existed.
- At first unserved states were considered for the new TC in order to spread the coverage of MoMSME TC which would help in supporting more MSMEs across the country. With the approval of locations for the unserved states, served states would also be considered for the technologies for which existing TC cannot support.
- On the basis of MSMEs concentration in prior experience sectors, leading clusters were identified in each unserved state. This resulted in identifying the industry wise potential locations in each of these states.
- Some of the unserved states took proactive approach and have allocated or identified land for the purpose of TC. These locations were mapped to the locations identified in the step above. Accordingly technology focus was selected for these locations.

3.2 Selection of Bhiwadi location for setting up of new TC

As per the location selection framework and subsequent approval in the 4th PSC meeting held on 15th May 14, Bhiwadi was selected as the location for setting up of new General Engineering TC focussing on Auto sector. Bhiwadi region has been found suitable from multiple perspectives:

- Bhiwadi is part of Alwar District in Rajasthan, a low income state. A TC at Bhiwadi will create opportunity to growth spread
- Catchment area (Gurgaon-Manesar-Bhiwadi-Faridabad-Noida) has some of the leading auto players and ancillary units. Bhiwadi and its catchment area has several major auto OEMs and over 300 tier I auto suppliers. A TC at Bhiwadi will help improve the manufacturing competitiveness
 - Major OEMs include Honda Siel, Hero Motocorp, Maruti Suzuki, Suzuki Motorcycle India Ltd., Ashok Leyland, Eicher, Yamaha
 - More than 100 tier I suppliers are present in the catchment area such as JBM, Motherson Automotive, Subros, Bosch, etc.
- Mega industrial projects in vicinity
 - Delhi Mumbai Industrial Corridor Khushkhera Bhiwadi Neemrana (Rajasthan)
 - Dedicated Freight Corridor (DFC)
 - Road Corridor connecting Shahjahanpur-Neeemrana-Behror urban complex in Neemrana with Bhiwadi-Tapukara industrial complex
- Good connectivity and access from other locations
 - Identified as a priority town of the NCR region due to strategic location between Delhi, Gurgaon and Jaipur. 70 kms from Delhi, 200 kms from Jaipur and 90 kms from Alwar
 - Located at 55 Kms from IGI Airport, and 25 kms from nearest rail head, Rewari
 - Bhiwadi industrial area is located on Rewari-Dharuhera-Sohana road, 6 Kms from NH-8

Location Brief

4. Location brief

4.1 Regional overview

Bhiwadi is located in eastern Rajasthan in Tijara tehsil of Alwar district. Bhiwadi is located at 28.21°N 76.87°E. It is bounded in the North by Gurgaon, Haryana, Bharatpur district on North-East and Mahendragarh, Haryana. Jaipur lies in the South-West and Dausa in the south. Alwar, Behror, Rajgarh and Kishangarhbas are four sub- divisions in the district. The district consists of twelve tehsils, seven sub-tehsils and six nagar palikas.

Bhiwadi has been identified as a regional centre or priority town of the National capital region due to its strategic location between Delhi, Gurgaon and Jaipur. The nearest airport is the Indira Gandhi Airport at New Delhi at a distance of about 55 Kms and the nearest rail head is Rewari, at a distance of 25 Kms. Bhiwadi industrial areas is located on Rewari-Dharuhera-Sohana road and is 6 Kms from NH-8. It is about 60 kms from Faridabad, 70 kms from Delhi, 95 kms form Noida, 200 kms from Jaipur and 90 kms from Alwar.

Bhiwadi falls in the Delhi Mumbai Industrial Corridor (DMIC) and Khushkhera – Bhiwadi – Neemrana (Rajasthan) has been identified as an investment region under DMIC. Further, a road corridor is also planned to connect the Shahjahanpur-Neeemrana-Behror urban complex in Neemrana with Bhiwadi-Tapukara industrial complex.

Figure 3: Location of Bhiwadi

Table 3: Alwar district snapshot

Section	Quantity/Value		
Area			
Total geographical area	8,380 Sq. km		
Administration			
Tehsil	12		
Villages	1,946		
Land use pattern			
Total area	7,83,281 Hectares		
Total irrigated area	4,51,546 Hectares		
Population (census 2011)			
Total population	36,71,999		
Men	19,38,929		
Women	17,33,070		
Literacy (except 0-6)			
Total literate	71.68 %		
Men	85.08 %		
Women	56.78 %		
Infant mortality rate	59 per 1,000 live births less		
	than one year		
Energy			
Electrified villages	1,873		

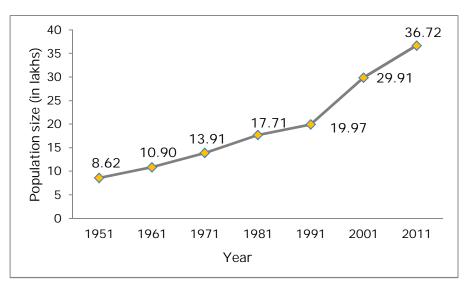
Aspect	Status	Significance for TC
Water availability	 RIICO has an integrated water supply system supplying to all its industrial estates across the state RIICO in Bhiwadi sources water from ground only Ground water in Alwar has a potential yield of 20-30 m3/hr and occurs under unconfined conditions at shallow depth (18-28 mt below ground level) Water table in Alwar has fallen from 9m in 1984 to 27m in 2004 	 Ensures availability of water on a daily basis TC will also have to dig a borewell. This would require permission from Central Ground Water Board The same would be permitted on the condition of provisioning of a rain water harvesting system of double the capacity of consumption of ground water
Electricity availability	 Power is being distributed by Jaipur Vidyut Vitaran Nigam As per neighbouring industries the availability and quality of power in the area is satisfactory 	Power back up to be designed keeping emergency and essential services/equipment's in mind
Wind flow	 Typically the wind velocity is about 5 km per hour Humidity is 70% The height above the level of sea is around 268.70 meters in Bhiwadi region Wind direction: Winds are strongest (13.1 km/hr) in June and lightest (5.6 km/hr) in November. The predominant wind directions are NW, SW, SE and NE 	Would be helpful to maximise natural ventilation during designing the layout of TC
Rainfall	The average annual rainfall measured in the region is about 600 mm	 For estimation of capacity of rain water harvesting system in the TC campus

Table 4: Status of power, water, wind and rainfall in the region¹⁴

¹⁴ Source:

http://www.bmabhiwadi.com/aboutbhiwadi.html

. http://ruidp.rajasthan.gov.in/IEE%20PDF/IEE%20Alwar%20Water%20Supply.pdf

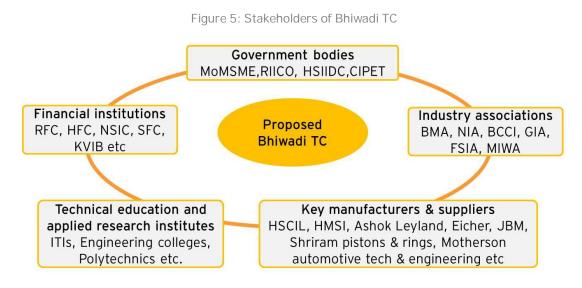

http://www.bhiwadionline.in/city-guide/geography-of-bhiwadi

Aspect	Status	Significance for TC		
Temperature	The temperature in Bhiwadi varies from 7 degree celsius in winter to 40 degree celsius in summer season	For estimation of capacity of AC to be installed for adequate cooling, designing of building as well as estimate the potential for use of solar based ¹⁵ equipment		

¹⁵ Rajasthan shines on the solar map of India with 300-330 clear sunny days. Within the state the districts such as Barmer, Bikaner, Jaisalmer, Jodhpur are the key regions with best solar radiation.

4.2 Demographic profile of the district

Population growth: The total population of Alwar district is 36.72 lakhs (census 2011). The growth of population in Alwar district was 22.77% during the last decade (year 2001–11). Out of the total population of in 2011, around 53% (approximately 19.4 lakhs) are men and 47% (17.4 lakhs) are women. The density has increased from 357 people per square kilometres in year 2001 to 438 in year 2011. The graph depicts the growth of population over the decades of Alwar district.


Source: Census of India

- Rural-urban population composition: Alwar district has an urban population of around 18% (approximately 6.5 lakhs) and a rural population of around 82% (approximately 30 lakhs) as per census 2011. In urban area, males constitute around 53% (approximately 3.5 lakhs) of the population and women constitute for around 47% (approximately 3 lakhs) of the population. In rural area, males constitute around 53% (approximately 15.9 lakhs) of the population and women constitute 47% (approximately 14.3 lakhs) of the population.
- Sex Ratio: The sex ratio at the district level is 895 (year 2011).
- Literacy Rate: The literacy rate of Alwar district is around 72%. Among male and female this rate is 85% and 57% respectively. At the district level, the number of literates has increased by 47% from year 2001 to 2011. The male and female literates increased by 36% and 68% respectively during this period.

4.3 Regional stakeholders

Regional Industry associations, leading manufacturers, training institutes, applied research institutes, academia, thought leaders and above all MSMEs would play an important role in providing the guidance on key aspects including (but not limited to) designing capabilities, technological requirements, skillset requirement and cluster development.

Key stakeholders for Bhiwadi TC would include; Government bodies, industry body associations, manufacturers and suppliers (e.g; OEMs, tier 1 and MSMEs etc.), financial institutions, technical and vocational training institutes, applied research institutes etc. in the catchment area. Alwar and its catchment area include Rewari, Faridabad, Gurgaon (Haryana) and Gautam Budhnagar (Uttar Pradesh). The following figure depicts the stakeholders of the Bhiwadi TC;

4.3.1 Government bodies

Rajasthan State Industrial Development & Investment Corporation (RIICO)

RIICO administers land development and provides associated infrastructure like power, water supply, road linkages and other basic social infrastructure for industrial areas. It has a strong regional presence throughout 27 regional offices in Rajasthan and has already developed 323 industrial areas over 70,000 acres with 32,500 industries in production. RIICO is also a facilitator in the development of industry specific special purpose industrial parks across the state with respect to the availability of related resources such as raw material, labour etc. The Key role of RIICO is;

- Site selection and acquisition of land.
- Financial assistance for projects.
- Technical consultancy for project identification and technical tie ups.
- Facilitation of government clearances.

- Merchant banking and financial tie -ups.
- Extending incentives and concessions according to the policy of State Government.
- Haryana State Industrial & Infrastructure Development Corporation (HSIIDC)

The catchment area of Bhiwadi includes some districts of Haryana especially, Faridabad, Gurgaon and Rewari. Accordingly, HSIIDC, the nodal agency for development of Industrial Infrastructure in the state of Haryana, is an important stakeholder. It has developed model industrial townships, industrial estates and industrial clusters (theme parks) and has framed guidelines for their governance. Key role of HSIIDC is:

- Preparation of detailed plan for land development and execution of development works like roads, water supply, sewage, drainage and power supply.
- Development of support infrastructure like STP/ CETP, development of plantation/ green belts, commercial and institutional sites, common parking facilities, etc.
- Central Institute of Plastics Engineering & Technology (CIPET)

CIPET is a premier institution devoted to Academic, Technology support & Research (ATR) activities for the growth of polymer & allied industries in the country. It has 16 centres across India which have state of art infrastructural facilities in the areas of design, CAD/CAM/CAE, tooling & mould manufacturing, plastics processing, testing and quality control to cater to the needs of polymer & allied industries.

- In the region, CIPET has two centres in Murthal (Haryana) and Jaipur (Rajasthan) with fullfledged design wing, tool room, processing division and plastics testing centre to cater to the industry through managerial and supervisory manpower, training, testing, consultancy, advisory and development services.
- CIPET's R & D wing named Advanced Research School for Technology & Product Simulation (ARSTPS), Chennai focuses on innovative product design for automobile, aerospace, medical and packaging industries, product and tool design conceptualization, E- manufacturing of prototypes, rapid prototyping for lead time reduction, reverse engineering for metal substitution with aesthetic and ergonomical approach.

The proposed TC at Bhiwadi can collaborate with CIPET with the objective to strengthen its expertise in tool manufacturing, research and development etc. CIPET has a product development cell which supports MSMEs in selecting right plastic material for their product. They also support in plastic processing mould design etc. Bhiwadi TC can work in collaboration with CIPET to supporting MSMEs in developing plastic products/ moulds for various auto OEMs and suppliers.

4.3.2 Industry associations

Bhiwadi Manufacturers Association (BMA)

BMA was formed in 1982 with an objective to address the problems of industries in Bhiwadi. Key activities undertaken by BMA are;

- Facilitation in resolving issues of Industries in coordination with the RIICO, police, JVVNL and other stakeholders
- Management of Bhiwadi Jal Pradushan Niwaran Trust which looks after the Central Effluent Treatment Plant (CETP) treating 9 MLD of effluents daily
- Organization of conferences, seminars and presentations to awareness regarding the latest developments in relevant fields
- Neemrana Industries Association (NIA)

NIA was established in 1998. It works as an interface between industries, their business partners and Government/statutory bodies. It supported State Government and RIICO in conceptualizing Japanese Zone in Neemrana in 2006-07 (details about the zone has been given in section 5.2.2). Key activities undertaken by NIA are;

- Provision of support in overcoming business problems
- Organization of regular awareness programs on multiple aspects of business
- Unification among the industries and their business partners for their common interest and consolidated growth of Neemrana
- > Auto Components Manufacturer Samiti, Alwar (ACMS)

It represents almost 250 SSI units and supports the cluster units to improve efficiency as well as works to encourage and strengthen its cluster units. It also supports cluster development initiatives, facilitates integration into the global automotive industry and support improvement in the range of products and services offered.

Bhiwadi Chamber of Commerce & Industries (BCCI)

This association represents the industries & trade in Bhiwadi. Key activities are:

- Organisation of awareness programmes, seminars & workshops relating to various aspects of industries.
- Facilitation to solve problems of industries

Gurgaon Industrial Association (GIA)

GIA represents around 400 organizations and Works to create and sustain an environment conducive to the growth of industry in Gurgaon partnering with the government through an advisory and consultative process. The key activities are:

- Provision of a platform for making entrepreneurs more innovative and efficient to gain a competitive edge.
- Conduction of seminars, workshops and conferences on subjects of importance.

Faridabad Small Industries Association (FSIA)

Established in 1977, it facilitates MSMEs to recover delayed payments under the new MSME Act through the Haryana state MSE facilitation council. Other key activities are:

- Provision of guidance and advice to small units free of cost through its help centre.
- Organization of workshops for promotion of industrial products.
- Provision of free services to new entrepreneurs for the initial 2 years.

Manesar Industries Welfare Association (MIWA)

It was constituted in 2009 and has over 500 entrepreneurial members. It acts as a common platform for the MSMEs and key activities are:

- Facilitation to address & resolve issues of industrial units.
- Betterment of business scenario in Manesar and improvement of ecological environment.
- Indian Industries Association (IIA), Delhi

IIA (Delhi, HQ-Lucknow) is an apex representative body of Micro, Small and Medium Enterprises (MSME) with a strong membership base of about 5000 Micro, Small and Medium Enterprises (MSMEs). IIA has an extensive network of more than 40 chapters spread in most of the industrialized districts of U.P and surrounding region including Noida, Greater Noida, and Ghaziabad etc. IIA works for creation of enabling environment for industrial growth especially for MSMEs. The objective of IIA includes;

- Fostering co-operation and support for the promotion of Micro, Small & Medium Enterprises.
- Disseminating valuable information on legal & technical aspects, latest development in industry & market, about latest Government policies, procedure and laws etc.

4.3.3 Leading manufacturers

OEMs and Tier 1 players

The Alwar region houses some of the largest industries in the auto sector. Key OEMs and Tier 1 players in the region include; Maruti, HSCIL, HMSI, Ashok Leyland, Eicher, JBM, Shriram pistons & rings, Motherson Automotive Tech & Engineering etc. The proposed Bhiwadi TC would develop capabilities in manufacturing of tools required to support these enterprises. It would also play an important role in the supply of skilled manpower.

MSME Units

Alwar and other districts in its catchment area like Jaipur, Rewari, Faridabad, Gurgaon, Gautam Budh Nagar house approximately 30,000 MSME units in manufacturing across key focus sectors¹⁶. An overview of the spread of MSMEs in this region has been provided in the need assessment section.

Key customers of MSMEs

Key customers of MSMEs are large manufacturing units in this area. A consolidated list of key large units has been given in the annexure 18.8.

4.3.4 Raw material suppliers

Some of the well-known suppliers of raw material to industries/TC are as follows;

Raw material	Major suppliers/ brands
Mild steel	SAIL, TATA Steel, Jindal Steels
Tool & die Steel	ASSAB Sripad Steels, Buderus Edelstahl Gmbh, Bohler Uddeholm
Copper & copper wires	Nikunj Eximp Enterprises, Birla Copper
Casting	Melco (Faridabad)
Others	Sandwik Asia, Birla Kena Metal, L&T

Table 5: Key suppliers of raw materials

¹⁶Source: DIP Data, Ministry of MSME for focus sectors : automotive, electrical, foundry & forging, general manufacturing, glassware, IT & electronics

4.3.5 Financial institutions

Major financial institutions across the region are as follows;

Table 6: Prominent financial institutions in the region

District name	Financial institutions
Alwar	Rajasthan Financial Corporation and Lead bank - PNB
Rewari	Lead Bank - Syndicate Bank and HFC Rewari
Faridabad	Commercial banks in Faridabad and State Financial Corporation
Gurgaon	Nationalised Banks, NSIC, HFC, KVIC & KVIB
Gautam Budh Nagar	Nationalised Banks

4.3.6 Technical education institutions and vocational training

The details of technical and vocational training institutes supplying skilled man-power in the catchment have been given as follows;

Technical education: More than 2 lakhs (year 2011-12) students enrolled in approximately 1,129 technical institutions in the State. Approximately 11.4 lakhs students appear in 10th under Rajasthan Board. Rajasthan houses many prestigious academic institutions for higher education. Some of the key institutes are: BITS

Table 7: Intake capacity at technical institutions in Rajasthan¹⁷

Type of institutes	No. of	Intake Capacity
	institutions	(2011-12)
ITI	825	109,413
Engineering	127	54,500
Polytechnic	177	47,050
Total	1,129	2,10,963

Source: Government of Rajasthan

Alwar district and its catchment have a total of around 200 ITI, engineering colleges and polytechnics with an annual intake capacity of more than 37,000 students.

(Birla Institute of Technology & Science), Pilani, NIT Jaipur and Raffles University (Singapore) in Alwar. Also, several institutions are currently setting up campuses in the state like Indian Institute of Technology (IIT), Footwear Design & Development Institute (FDDI), National Institute of Fashion Technology (NIFT) and Indian Institute of Management (IIM) etc.

¹⁷ Source: http://www.investrajasthan.com/education.cms

District	Type of institutes	No. of institutions	Intake Capacity
	ITI & ITC	91	10,118
Alwar	Polytechnic	11	3,060
	Engineering	8	3,900
	ITI & ITC	5	1,400
Gurgaon	Polytechnics	7	840
	Engineering	14	6,000
	ITI & ITC	15	2,224
Rewari	Polytechnics	4	480
	Engineering	2	780
	ITI & ITC	8	1,672
Faridabad	Polytechnics	9	1,020
	Engineering	14	5,730
	ITI & ITC	4	NA
Gautam Budh Nagar	Polytechnics	5	NA
	Engineering	26	NA
	ITI & ITC	37	NA
Delhi ¹⁸	Polytechnics	18	NA
	Engineering	24	11,500
Total		221	48,724

Table 8: Intake capacity at technical institutions in Alwar catchment

Source: Reports of Directorate of Technical Education, Rajasthan, Department of Industrial training, Haryana Department of Technical Education, Haryana and compiled from other websites.

- Vocational training: Government of Rajasthan established Rajasthan Skill and Livelihood Development Corporation (RSLDC) in 2004 to address the challenges of unemployment and to ensure gainful and sustainable employment. RSLDC formulates strategies to promote and facilitate large scale livelihoods. Till date its skill training initiative has covered 112,000 trainees with training contents for 202 courses in 34 sectors.
 - RSLDC introduced short term employment linked modular employable skills courses in production and manufacturing, automotive repair, electrical, electronics, fabrication, gem and jewellery, information and
 - communication technology, plastic processing etc.

Alwar district has around 17 SDCs offering vocational training courses mainly in the service sector. During 2013 these SDCs have trained 896 students.

 The duration of these training courses varies from 40 days

(240 hours) to 90 days (540 hours) and the minimum qualification requirement to avail for these trainings is between 5th pass and 12th pass depending on the course.

¹⁸ No of ITIs & Polytechnics are approximate figures compiled from different sources

Opportunity and Need Assessment

5. Opportunity and need assessment

5.1 India scenario

The tooling industry that consists of developing and manufacturing dies, moulds, jigs & fixtures as well as testing and prototyping serves as the interface between product design and product manufacturing. Growth of manufacturing related industries, therefore, drives the growth in demand for tooling. The constraints to the growth and competitiveness of the Indian tooling industry mirror the ones affecting manufacturing as a whole. The scarcity of skilled workers and problems related to their retention, as well as the lack of access to a high-quality design and prototyping facility, has hurt growth.

The trend of growing demand for tooling market is illustrated in the figure below:

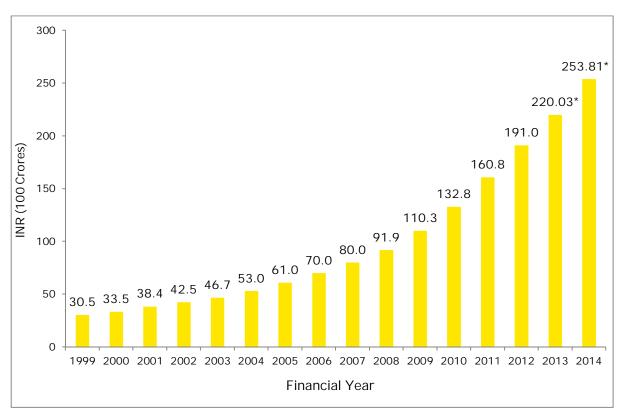
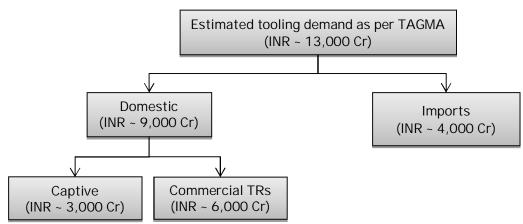


Figure 6: Size of the tooling market in India

Source: Indian tool room industry report, TAGMA (2011)


*Projections based on CAGR of 15.2%

Indian Tool Room industry size is estimated at ~INR 13,000 crore (2010-11)¹⁹ which can be divided into two key segments - domestic (captive and commercial) and imports. Domestic Tool Rooms market is estimated at INR 9,284 crores out of which INR 3,129 crores is generated from captive tool rooms and commercial tool rooms (CTRs) account for INR 5,955 crores. Imports are to the

¹⁹ Indian tool room industry report, TAGMA (2011)

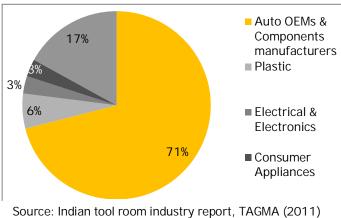
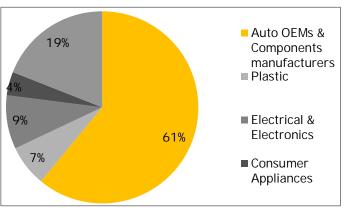

tune of INR 4,150 crores. In order to arrive at the addressable market for MSME TCs, a further analysis of the above three segments has been carried out.

Figure 7: Structure of tooling market²⁰

In-house (Captive) Tool Rooms: Captive Tool Rooms mainly belong to the large and medium scale companies that develop tools for in house requirement, e.g. auto component manufacturers, plastic, packaging etc. Such Tool Rooms have state of the art equipment to meet the internal requirements. Auto OEMs and components manufacturers constitute around ~70% of this segment.


Figure 8: Composition of captive segment

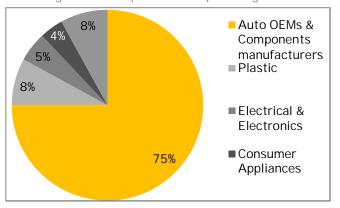
Quality tooling is critical to produce high quality finished components and such companies perceive that quality of the components can be maintained only by developing tools in house or through

imports from their foreign counterparts which also ensures steady supply as per requirement. Another major reason for captive tool making is that these companies don't want to share their designs of tools to safeguard intellectual property of the company. Nearly ~ 70% of auto and auto component companies except from Indian manufacturers, primarily import their tooling or have a captive Tool Room mainly due to lack of

Source: Indian tool room industry report, TAGMA (2011)

²⁰ Indian tool room industry report, TAGMA (2011)

raw material quality and IP content. Indian Commercial Tool Rooms suffer from capacity constraint causing an increase in the lead time for manufacturing the tools to meet the demand of the end users. Thus, captive segment does not present a significant opportunity that can be targeted by MSME tool rooms.


Commercial tool rooms (CTRs): CTRs account for ~ 46% of the total tooling market. Commercial Tool Rooms supply tooling on a commercial basis to a variety of industries and operate as independent companies. Besides manufacturing tooling, some Commercial Tool Rooms also undertake precision machining and component manufacturing. This segment with an estimated market size of the ~ INR 6,000 crores (in year 2011) is the immediate low hanging fruit which can be addressed by MSME TCs by supporting Commercial Tool Rooms. It has been observed that Commercial Tool Rooms have insufficient capacity that leads to an increase in lead time for manufacturing of tools.

Imports: Imports account for ~ 31% of the total tooling market which is around INR 4,000 crores.

As per TAGMA report and our discussions with some of the Private Tool Rooms, key reasons for tooling imports are;

- Quality: Better surface finish, lower turnaround time and higher degree of accuracy by ability to meet the tolerance range.
- Capacity: Insufficient capacity of Indian tool rooms to meet domestic

Figure 10: Composition of imports segment

Indian tool rooms to meet domestic Source: Indian tool room industry report, TAGMA (2011) demand and lack of infrastructure to make certain types of tools also results into imports.

- Cost: Higher price, non-availability of materials at par with the international standards, use of out dated technology due to absence of advance machinery compromises the quality of commercial tool rooms leading to demand for imports. In Countries like China and Taiwan, the tooling cost is lower than India.
- Design: International companies based in India prefer procurement of their tooling from their parent company to maintain design standards across the globe e.g. LG & Samsung import most of their tooling from Korea.

Auto OEMs and components segment account for around 75% of the total imports in tooling. International companies like Volkswagen, General Motors and Siemens etc. still prefer international tool makers for superior quality. The rest 25 % i.e. accounts for tooling requirements from other sectors which can be addressed by MSME Tool Rooms. This pushes the customers to look outward to fulfil their requirements.

Total addressable market for MSME Tool Rooms is about INR 7,000 crores (6,000 for Commercial Tool Rooms + 1,000 crores imports, especially those imports which take place as a result of insufficient capacity of domestic Commercial Tool Rooms.

To start with, the primary focus could be addressing the capacity constraint in the domestic tool room industry in the short run. However, a focused approach towards specialised tool production in the long run can help capture a part of imports which is being replaced by domestic supply from Commercial Tool Rooms. This would require additional support to Tool rooms just more than financial support and assistance. In the long run – MSME TCs can address rest of the market by,

- Increase in specialisation,
- Process standardisation,
- Safeguards to protect IP,
- > Sharpen focus on quality and reduction in delivery times

5.1.1 Primary research

As a part of preparing the DPR, discussions with some auto component manufacturers and suppliers in the Bhiwadi region (including Manesar, Faridabad, Gurgaon, Delhi, Noida) was carried out. The objective of the primary research was to understand their business requirements, issues, challenges, and future requirements²¹ to develop a deeper appreciation of the requirements that the Technology Centre Systems Program of the O/o DC MSME can serve in the future. The research also included the support requirements of these players' with respect to designing, training, manufacturing and consultancy.

Detailed telephonic discussions as per the questionnaire were conducted with owners/ senior management officials of around 40+ players²² to understand their needs and potential areas of support. 60% of the companies had turnover of up to INR 60 crores and rest 40% had turnover of more than INR 100 crores.

Key inferences drawn from the primary research are as follows:

- The main items produced were die cast products, sheet metal products, rubber products and plastic parts
- The main manufacturing processes in use were moulding, welding, die casting, forging, hydraulic pressing processes, CNC (Computer Numerical Control) such as VMC. There weren't many issues in the current processes

 $^{^{21}}$ Key questions asked during telephonic discussions in Annexure 18.4

²² Details provided in the Annexure 18.5

- > 55% of the companies have in-house facilities of production of tools
- ▶ 60% of these companies procure tools from domestic suppliers and rest 40% import tools
- Requirement for common facility for manufacturing of tools (sheet metal and plastic mould) in the catchment
- Approximately 25% of the companies face problems in tool quality and availability, high cost of tools. Industries such as RICO Auto Industries, SKH Auto components, Bony Polymers, Machino Polymers highlighted the same
- Only 10% of the companies have sought the support of MSME tool rooms previously (such as SKH auto components)
- Approximately 65% of the auto component suppliers are ready to accept the support of MSME tool rooms/ TC's with respect to tool designing, manufacturing and training
- > There is scope for MSME's in making moulds, dies and sheet metal tools
- The main managerial manpower requirements of these companies are engineering (B. Tech engineering/ diploma engineering and tooling engineering) with project management skills and manpower handling. The machine operators are generally ITI graduates in the respective field of manufacturing and further needs to be trained. Even some of the players (about 20%) expressed the need for training in management for their shop floor level manpower. In addition to the above training to motivate employees are also desired for maximization of output.

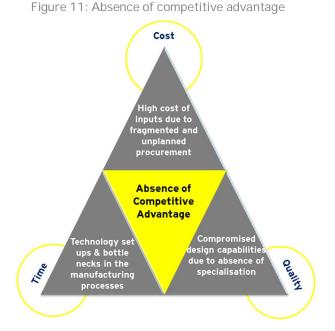
Further similar kinds of inferences were also observed during telephonic discussion with players²³ across Hyderabad, Bengaluru, Chennai, Aurangabad and Ahmedabad with respect to support requirements of these players for designing, training, manufacturing and consultancy carried on. There is a need to position the MoMSME TRs to support the commercial tool rooms to strengthen their design capabilities and capacity to manufacture complex tools. Further, there is also a need to create more awareness of new technologies and opportunities among private tool rooms to enable them to serve that market.

Summary of challenges faced by players based on primary research:

- a. At the industry level
 - Absence of or limited automation in the manufacturing process in India;
 - Leads to low machine utilisation of around 50-55% on an average (best in India is around 70-75%) compared to 95-99% abroad in China where a single operator manages multiple machines
 - Main reason is lack of knowledge/ awareness of low cost automation technologies
 - Lack of standardisation

²³ List of players contacted is attached in the annexure 18.8

- Limited or very small number of standardised components for mould design in India cause delay in the production process. For every mould to be developed, designing is done from scratch to finish. In China & Malaysia the standardised component usage is very high and therefore concentration is more on core & cavity design of the mould resulting in better quality and faster production
 - Use of Standardised components helps to deliver moulds in 6 week in China compared to 16 weeks required in India
- Lack of availability of skilled workers& high attrition/ job hopping, shortage of trained manpower at machine operator
- Low capacity and lack of capability to develop heavy and precision machines requiring a high proportion of the CNC machines to be imported (2/3rd of the total CNC machines) mainly because of the capital intensive nature of investment
- Others
 - Limited/ slow adaptability of technology by domestic TRs due to perception of quality about domestically developed products
 - Dispersed/ unorganised industry structure
 - High cost of inputs makes Indian machines costly to users as compared to those imported
- b. Other macroeconomic factors
 - High interest rates of borrowing (~14%) which discourage investments by compromising viability
 - Lower customs duty making imports more attractive and does not encourage domestic transfer of technology and local manufacturing and / or value addition
 - > Export efforts constrained by high cost of maintaining a presence in overseas markets


5.1.2 Challenges faced by MSME TRs

An analysis of the existing MSME TRs in India reveals that limited efficiency in production has

caused loss of some of its clients to private Tool Rooms or cheaper options from other countries. One of the key reasons identified has been the generic nature of tool development by MSME Tool Rooms rather than catering to a specialised category.

Generalised Tool Rooms are the norm in India due to;

- high capital investment requirement,
- to cater to a larger market,
- Iow volumes in specific categories,
- better risk management and
- absence of specialisation

Whereas these Tool Rooms produce a variety of tools, they lack competitive advantage in any of the categories due to lower efficiencies mainly due to the technology used. Time taken for delivery of the product is longer due to;

- technology set ups and bottle necks in the manufacturing processes,
- high cost of inputs due to fragmented and unplanned procurement,
- Iower design capabilities due to lack of specialisation

All these factors result in escalated costs and a further loss of competitive advantage. This reflects in the low volumes of tool production orders, which prevents the industry in tapping into the advantages of large scale production and economies of scale.

If MSME Tool Rooms specialise in a particular tool or tool production for a specialized sector, chances of developing competitive advantage become high. In Germany, a TR of Zitzmann Inc. specialises in particular type of mould development required for manufacturing glass bottles. It has got substantial competitive advantage in the production of such tools. Similarly, in China a TR of China Taoshi Mould has more than 120 machines ranging between 40,000 – 75,000 rpm that specialises in a particular type of moulds whereas for the Indian counterpart the machines range between 12,000 to 20,000 rpm. This results in on an average, procurement of a certain type of mould from China takes one third of the time it takes to be procured from within India. This is mainly due to low productivity and non-standardised use of tooling components in India.

Specialisation in the production process leads to some degree of standardisation enabling the Tool Room to maintain inventory levels which subsequently reduce the turnaround time for procurement. Absence of design facilities/ good designers in the MSME TRs is another important issue. Further, non-alignment of the compensation structure for designers as per that of the market makes it difficult to retain the designers in the long term.

Case study 1: Specialised tool rooms in the world - Zitzmann GmbH & Co.KG, Germany

- Zitzmann glass mould is a large supplier of high quality moulds for the leading glass companies in Germany
- > Specializes in manufacturing of moulds for complex container designs such as;
 - High quality perfume flacons
 - Medicine bottles, tins, jars
 - Shaped bottles 3ml 4250ml
 - Block moulds, solid blank mould
- Its production portfolio includes complete mould sets, semi-finished parts, accessories in normal casting, special casting steel or bronze, vacuum full profile coating as well as flame spraying full profile coating
- It's in house facilities include latest technologies and production methods like;
 - CAD/CAM design using Catia V5
 - The latest CNC machines in the turning and milling sector
 - Full profile welded moulds
 - Induction heat treatment and additional plasma welding
 - It has around 120 highly skilled technicians producing more than 30,000 moulds per year

Case study 2: Specialised tool rooms in the world - China Taoshi Mould, China

- > A well-known and one of the biggest plastic mould designing and manufacturing enterprise
- Manufacturer of moulds, specializing in plastic moulds for automobiles, house electric equipment, electronic products, motorcycle, and other daily-used pieces etc.
- In house facilities include;
 - Large-size CNC equipment including high speed CNC and EDM machines etc.
 - Advanced CAD/CAM/CAE system
 - Workstation and software of Pro-E, FFCAE, CIMATRON, etc.
- It has more than 600 employees including middle/high administrators and around 180 technicians

5.2 Market opportunity

The auto ancillary segment has seen large scale investments and Rajasthan has become a prominent base for auto manufacturing with the establishment of a growing auto cluster in Alwar district and Honda's facility at Bhiwadi.

- Bhiwadi region is spread over approx. 5,300 acres and comprises of 3 industrial areas -Bhiwadi, Chopanki and Khushkera
- A special auto & engineering zone has also been developed in the Pathredi industrial area and another special zone is being planned

Bhiwadi is part of NCR and is around 70 km from Delhi and 200 km from Jaipur. It falls in the Delhi Mumbai Industrial Corridor. The Dedicated Freight Corridor (new high axle railway connectivity with multi modal linkages) between Delhi and Mumbai also passes through Bhiwadi, making it a strategic location for Industries. Khushkhera – Bhiwadi – Neemrana (Rajasthan) has been identified as an investment region under DMIC. Further, a Central Spine, a road corridor is planned to connect the Shahjahanpur-Neeemrana-Behror urban complex in Neemrana with Bhiwadi-Tapukara industrial complex. Along with its strategic location, Bhiwadi's competitive advantage lies in;

- Infrastructural development is underway in a big way for industry clusters by RIICO.
- Availability of labour and proximity to NCR helps in accessing industrial labour and managerial talent.
- Availability of basic amenities such as piped water supply, schools, transportation, hospitals, telecom networks, banks etc.

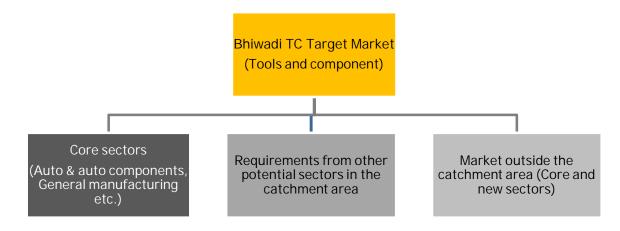

Figure 12: Proximity to automotive cluster

Figure 13: Auto clusters at a glance

Bhiwadi has an edge due to its location. Besides Rajasthan, industrialists from Delhi, Punjab and other parts of India can be encouraged to set up their enterprises here.

Figure 14: Target market structure of Bhiwadi TC

5.2.1 Market in core sectors in the catchment

60 per cent of India's passenger car production, 55 per cent of motor cycle production and 25 per cent of tractor production is concentrated in NCR, of which district Alwar is an integral part.

Rajasthan is coming up as an automotive hub with Bhiwadi, Neemrana and Pathredi in Alwar district hosting over 100 automotive and auto parts manufacturing companies (existing and proposed). Key players such as Honda Siel cars, Ashok Leyland, Eicher, Honda Motorcycle & Scooter India (HMSI),, Federal Mogul, Continental Engines, Global auto parts alliance India (GAPAI), Bestex, Shriram Pistons & Rings etc. have manufacturing bases in the state.

The auto industry in Rajasthan is present across the entire industry value chain.

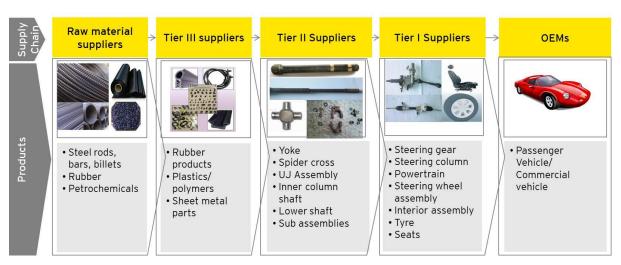


Figure 15: Value chain in the auto industry (Illustrative)

Close proximity to the NCR region also allows for easy access to the existing auto component supplier network and required logistics facilities. The following table enlists the prominent players in Rajasthan in auto sector.

Туре	Key auto players
	Honda Siel cars India (HSCIL), Khushkhera, Alwar
	Honda motorcycle & scooter India (HMSI), Tapukara Industrial Area, Alwar
	Ashok Leyland, Matsya Industrial Area, Alwar
	Eicher, Itarana road, Alwar
	TAFE tractors, Alwar
	Hero motocorp, Neemrana, Gurgaon and Dharuhera
	Mahindra and Mahindra, Jaipur
	Eicher tractor limited, Faridabad
	Escorts limited, Faridabad
OEMs	Yamaha motor, Faridabad
	► Eicher Motors, Gurgaon
	► HMSI – Gurgaon
	► Maruti Suzuki, Gurgaon
	Harley Davidson, Gurgaon
	► Honda, Manesar
	Maruti Suzuki, Manesar
	Honda Siel cars India (HSCIL) Greater Noida
	India Yamaha motors, Surajpur
	HSCIL, Khushkhera, Alwar
	Federal moghulgoetze, Bhiwadi, Alwar
Engines &	Shriram pistons and rings, Bhiwadi, Alwar
parts	Bestex MM India, Industrial area Alwar
	Continental engines, Bhiwadi
	Gaurav Engineering, Faridabad
	Officine Canavesane Di Precisione (OCAP), Bhiwadi, Alwar
Transmission,	Hitech gears, Bhiwadi, Alwar
	Amson automotive, Bhiwadi, Alwar
steering parts and	Yamaha motor - Faridabad
other	GKN Invel Transmission, Faridabad
	Hyderabad Industries, Faridabad
components	Denso India, Greater Noida
	► Hongo India, Greater Noida
Suspension,	Nissan brake India, Neemrana, Alwar
brakes &	Horizon industrial products, Neemrana, Rajasthan
	Balkrishna industries, Bhiwadi, Alwar
tyres	Chakradhari wheels, Bhiwadi, Alwar

Table 9: Composition of major auto players in the catchment and region (NCR)

Туре	Key auto players
	Goodyear India - Faridabad
	Kobe suspension - Faridabad
	Motherson automotive tech & engineering, Khushkhera, Bhiwadi, Alwar
	Toyota gosei, Neemrana
Electricals/	Hindustan Wires - Faridabad
Others	Delphi India – Gurgaon
	Nuchem – Faridabad
	Delphi Automotive Systems - NOIDA

Key districts in the catchment area of Bhiwadi comprising of majority of the tooling demand in general engineering and auto sector are as follows;

State	District	Automotive	Electrical	Foundry &	General	Grand
	District	Automotive	Licetricul	forging	Mfg	total ²⁴
Rajasthan	Alwar	200	1360	1270	1360	4190
Haryana	Rewari	NA	NA	310	113	423
	Faridabad	NA	430	2072	3675	6177
	Gurgaon	1478	28	1035	2000	4541
Uttar	Gautam Budh	362	892	1221	776	3251
Pradesh	radesh Nagar		572	. 22 1	, , , 0	0201
	Total	2040	3835	8832	8510	23,217

Table 10: Sector-wise spread of MSMEs in key districts

Source: DIP Data, Ministry of MSME

Districts expected to be served by the proposed Bhiwadi TC would be Alwar and its catchment area including Rewari, Faridabad, Gurgaon (Haryana) and Gautam Budh nagar (Uttar Pradesh). Key highlights of the catchment area have been presented in the table below;

²⁴ *Total number of MSMEs in major sectors of focus for TCSP like Automotive, Electrical, Foundry & forging & General Manufacturing

District & No. of MSMEs ²⁵	District Profile	Units in general engineering and auto & auto components	Key highlights
Alwar (22,201)	 There are 3 industrial areas in the district namely, Bhiwadi, Chopanki and Khushkhera. Existing clusters of MSMEs in the district mainly manufacture processed food, auto components, edible oil, cement pipe & jalies, and leather tanning etc. Key products include; shaving blade, hand tools, surgical blade, empty hard gelatine capsules, leather shoes, subscriber carrier system, tyre-tube, picture tube, chemicals, slate tile, different chemicals like calcium cyanide, alkalis salt, moped. PVC cable sanitary ware, readymade garments etc. 	 Alwar district has over 4,000 MSMEs in automotive, electrical, foundry and forging, general engineering sectors apart from other sectors. Alwar Auto Components Manufacturer Samiti is an automobile component cluster in the district with a turnover of more than INR 250 crores and providing direct employment to around 5,000 people. 	 Alwar District is part of the NCR. As per the NCR plan, Alwar and Bhiwadi have been identified as regional centres and are to be developed for establisment of industries and other economic activities on priority basis. Investment region proposed as part of DMIC: Bhiwadi – Neemrana- Khuskhera lies in Alwar Tooling requirement arises majorly from the engineering units in the district.
Rewari	There are 3 industrial	Rewari district has over 400	Rewari's location

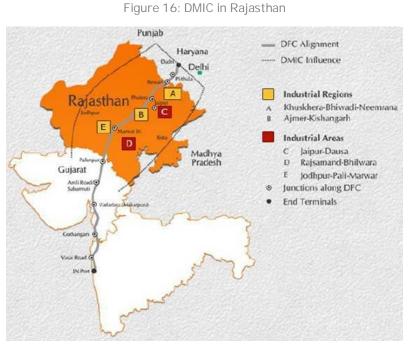
Table 11: Catchment area profile

 $^{^{25}}$ Total number of MSMEs in the district, source: District Industries Centre, District Industrial profiles-MSME

District & No. of MSMEs ²⁵	District Profile	Units in general engineering and auto & auto components	Key highlights
(1,330)	 areas in the district namely, Dharuhera, Rewari and Bawal. Existing MSMEs in the manufacturing sector across the district cater to majorly metal based (steel fab.) and engineering units Key products include; motorcycles, zip fasteners, auto glass, etc. Other products include; televisions, non- woven carpets floor tiles, beer, cotton and synthetic Yarn, metal cans, jelly filled, telephone cables, copper and brass sheets and circles, disposable syringes and heavy earth movers and a host of other consumer and industrial products. 	 MSMEs in automotive, electrical, foundry and forging, general engineering sectors apart from other sectors. The prominent large units among these are Hero Motocorp, Honda motors, Sony India, Asahi India Safety glass Ltd., Beckon and Dickinson, Metso mineral, Aggarwal metal works, Gupta sheet Metal and Everest metal works situated in and around Rewari town. 	and proximity to Delhi, its well- developed industrial infrastructural base makes it a sought after location for industries
Faridabad (11,896)	Existing MSMEs in the manufacturing sector across the district Faridabad spurted due the setting up of big industries. The top 3 industry segments	 Faridabad district has over 6,000 MSMEs in automotive, electrical, foundry and forging, general engineering sectors apart from other sectors. Presence of auto majors like 	Tooling requirement arises from the type of products manufactured like; spring leaves, clutch plates, steel tubes, bumpers, all kinds of

District & No. of MSMEs ²⁵	District Profile	Units in general engineering and auto & auto components	Key highlights
	 catering to 60% ²⁶of the overall number of units present in Faridabad are the automobile parts (35%), sheet metal components (14%) & fabrication (11%). Key products include auto parts, tractors, shoes etc. 	 Escorts and Eicher, initiated the cluster development. 10 of the 15 industrial segments in Faridabad cater to the automobile market. Key OEMs served by the industrial units in Faridabad are Escorts, Mahindra, Eicher, Yamaha, Maruti, Honda Siel Cars, New Holland etc. 	metal auto parts, cranes, fans, exhaust systems, heat exchanger etc.
Gurgaon (14,250)	 The manufacturing cluster around Gurgaon originated with Maruti establishing its base here and it has been instrumental in establishing a supplier base for its cars. With most of the OEMs being Japanese manufacturers or their collaborations, a high percentage of suppliers in this cluster have Japanese origins, equity or technical inputs. Key products include; Cars, scooters, 	 Gurgaon district has over 4,500 MSMEs in automotive, electrical, foundry and forging, general engineering sectors apart from other sectors. Auto parts manufacturing and auto rubber parts are among the prominent manufacturing activities in the region. Automobile manufacturing is strength of the region with presence of Maruti-Suzuki, Hero-Honda, Honda Motors, Escorts which further led to the development of a large number of ancillaries in this 	 Gurgaon-Manesar- Bawal region has been identified as an Auto hub by the Government of India. A number of auto & auto component units have already set up base in this hub. Tooling requirement arises majorly form the large OEMs and tier 1 players in the district.

²⁶ Cluster Profile Report Faridabad - Mixed Engineering Cluster (2012); funded by the Small Industries Development Bank of India (SIDBI)


District & No. of MSMEs ²⁵	District Profile	Units in general engineering and auto & auto components	Key highlights
	motorcycles, auto parts, readymade garments and plastic parts etc.	 sector. The leading suppliers in this area include Asahi Glass, Krishna Maruti, Sona Koyo, Jai Bharat Maruti (JBM), Omaxe and Bharat Seats. 	
Gautam Budh Nagar (14,048)	 There are two key areas namely Noida & Greater Noida earmarked for industrial development in the district. Key manufacturing activities include electronics, textile products, engineering, computer software etc. mainly from Noida export processing zone (NEPZ). 	 The district has over 3,000 MSMEs in automotive, electrical, foundry and forging, general engineering sectors apart from other sectors. Key auto sector players in the region include Delphi, Denso India, Reinz Talbros, Hongo India etc. 	 The district of Gautam Buddh Nagar and its major industrial areas are of strategic importance and have immense growth potential due to its inclusion in the DMIC. Tooling requirement arises majorly from the automotive systems, electronics and component manufacturers in this district.

Source: District Industries Centre, District Industrial profiles-MSME

5.2.2 Market in other potential sectors in catchment

The region has potential to tap the demand from other growth sectors in and across the neighbouring states within upcoming sectors in manufacturing and service particularly in the area of food processing, sheet metal components, plastic components, engineering components etc.

 a) Industrial corridor in Rajasthan: With nearly 39%
 of DFC passing through

Rajasthan, opportunities for industrial establishment along the route are eminent as the corridor will make Rajasthan easily accessible to western and northern markets in India and provide seamless port connectivity for international trade. About 60% of the state's area (in 22 Districts including major districts such as Jaipur, Alwar, Kota and Bhilwara) falls within the project influence area. With this, the state will become an attractive destination for setting up industrial and support infrastructure units. The two major upcoming areas identified in this catchment under DMIC are;

- Manesar- Bawal Investment Region (Haryana): Sixteen industries have been identified as target industries for development in the MBIR. The same have been classified into five broad clusters as follows;
 - Engineering cluster: Automobile, auto components, engineering, downstream iron and steel
 - Consumer products cluster: Food processing, ready-made garments, plastics downstream and building materials
 - Technology cluster: Telecom equipment, consumer durables and IT/ITES
 - Future technology cluster: Nuclear equipment, pharmaceutical R&D. bio technology
 - Services cluster: Higher education and hospitality
- Khushkhera Bhiwadi Neemrana (KBN) Investment Region (Rajasthan) has been identified as the priority region for investment in the Rajasthan sub-region of DMIC.

Potential industry sectors in this investment region are biotechnology, IT/ITES and health sector along with automobile.

a) Japanese Zone in Neemrana: The state has developed an industrial estate in Neemrana dedicated to Japanese investors. Subsequent to the MoU between RIICO and Japan External Trade Organization (JETRO), RIICO has so far allotted 317 acres of land to 23 Japanese companies in this area, out of which around 10 companies have started commercial production and 5 companies have started construction work as on their units. Key multinational companies include Nissin, Mitsui, Nippon, Disking, Mitsubishi, Dykie colour etc. The region is equidistant from Delhi and Jaipur and will also be a part of the proposed DMIC, making it a strategic location for these companies. A total investment of approximately INR 2,540 crores is expected on the already allotted land which would translate into employment opportunities for approx. 4,900 persons. The key industries with expected investments in this zone are as follows;

Companies	Investment (in crores)
Nissan India private limited	240
Mitsui chemical private limited	400
Unicharm India hygenic private limited	160
ACI mitsui prime advanced composites private limited	120
Mikuni India private limited	155
NYK logistics India limited	100
Nippon steel	300

Table 12: List of key companies with expected investment in the Neemrana Japanese zone

5.2.3 Market outside catchment area

Going forward, in addition to the MSMEs in existing sectors (auto, general engineering etc.), Bhiwadi TC can also focus on MSMEs in other sectors e.g. food processing outside the catchment area. Typical opportunities for TC outside the catchment in existing and new sectors would be from existing and proposed industrial zones in this area like;

a) Kundli-Manesar-Palwal (KMP) Expressway: The alignment of the expressway takes off from NH-1 near Kundli, crosses NH-10 at Bahadurgarh, crosses NH-8 near Manesar, and joins NH-2 near Palwal. It passes through Gurgaon, Mewat, Rohtak, Jhajjar and Faridabad, which are among the prominent fast growing urban centres in NCR.

Figure 17: Kundli-Manesar-Palwal Expressway

To boost industrial development along the corridor, specialized industrial estates have been planned at strategic locations. Figure 18: Agro food parks in Rajasthan They include;

- Footwear and leathergarments parks at Bahadurgarh
- Food park at Kundli in Sonipat
- Gems and jewellery park at Udyog Vihar in Gurgaon and
- Two apparel parks, one in Gurgaon and another at Barhi in Sonipat

- b) Industrial parks/ zones in Rajasthan: Industrial infrastructure developed by RIICO are as follows;
 - Four agro food parks in Kota, Jodhpur, Sriganganagar and Alwar for development of agriculture based industries with an investment of INR 61.41 crores (US\$ 13.6 million). The State is India's largest producer of oilseeds (rapeseed & mustard), seed spices (coriander, cumin and fenugreek) and coarse cereals. Also, it is a major producer of soybean, food grains, gram, groundnut and pulses. Rajasthan's vibrant agriculture sector offers various opportunities for the successful establishment of potentially profitable agro-processing units.

The food park in Alwar district is spread across 185.94 acres and Government has allocated INR 14.44 crores (including RIICO's contribution of INR 10.44 crores) as on 31st March, 2011). A total of 203 plots have been planned out and 172 have been allotted so far. Out of the allotted plots, production is already going on in 19 plots and in 25 plots in construction has been started.

- Export promotion industrial parks (EPIPs) at Sitapura in Jaipur, Neemrana in Alwar and Boranada in Jodhpur. The EPIP in Jaipur is the largest export park in northern India. The EPIPs have been planned to accommodate the best possible facilities for manufacturing activities in: Gems and Jewellery, Electronics, Garment, Handicrafts, Engineering, Leather goods, IT Park etc.
- Special Economic Zones in the state for gems and jewellery in Jaipur and handicrafts in Jodhpur.

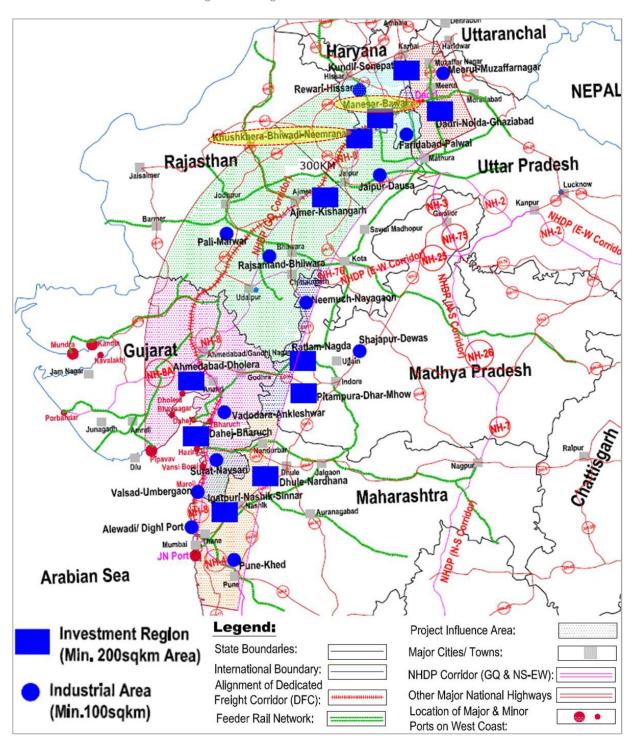
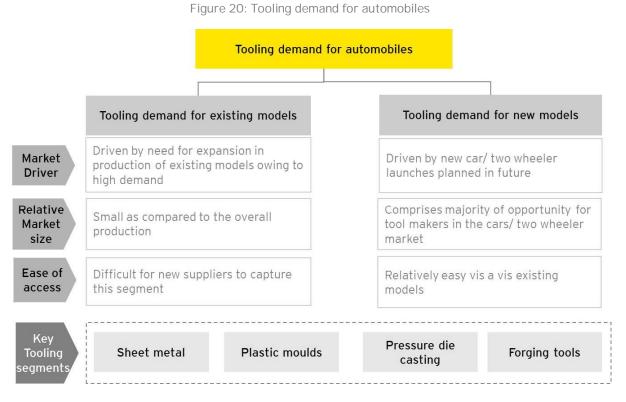


Figure 19: Region of influence under DMIC

5.3 Opportunities associated with other mega projects planned in Bhiwadi

In Bhiwadi catchment area, following are some additional upcoming mega projects planned in the near future.


- Nippon Pipe India Private Limited: Part of the Japan-based Nippon group, is setting up a steel tube components project with an expected investment of INR 300 crores for the automobile industry in the Japanese zone at Majrakath, Neemrana.
- Japanese car major Honda is slated to double its production capacity to 2.4 lakh units annually with an investment of INR 2,500 crores as it drives in new models in the market.
- Two-wheeler maker Hero MotoCorp is working on building a new R & D centre at Kukas (20 km north of Jaipur) by investing INR 450 crores with plans to commence operations by first quarter of 2015. The R & D centres at Gurgaon and Daruhera plants in Haryana are likely to be shifted to the R& D centre in Kukas once it is operational.
- INR 1,000 crores state-of-the-art Mainline Electric Multiple Unit (MEMU) coach factory in Bhilwara by Indian railways and BHEL.
- ELCINA electronics manufacturing cluster, Salarpur Bhiwadi, Rajasthan: 100 Acres of land has already been allotted by the RIICO and in-principle approval has been granted by Department of Electronics & IT (DeitY), Govt. of India under electronic manufacturing cluster (EMC) Policy. SPV has already been formed and 19 Members have already joined. The SPV will have its own water distribution, sewage system and a dedicated power distribution system with power back up. The cluster will have facilities like; testing facility to be run by approved test laboratory, "common tool room", convention and training Centre, other facilities as per decision of the cluster group.
- Integrated Industrial Township at Greater Noida (Uttar Pradesh): The Integrated Industrial Township has a total site area of 302.5 Hectares (747.5 acres) and a total project cost of Rs 35,000 crores. The township aims to promote R&D activities to give a boost to the manufacturing activity in the Dadri Noida Ghaziabad Investment Region (DNGIR). The Integrated Industrial Township is proposed with new age industry sectors such as Biotechnology, Hi-tech electronics industry, and Research and Development (R&D). The township will also provide support in key sectors like telecom, electronics, automobile, food, pharmaceutical, healthcare, and defence research sector.

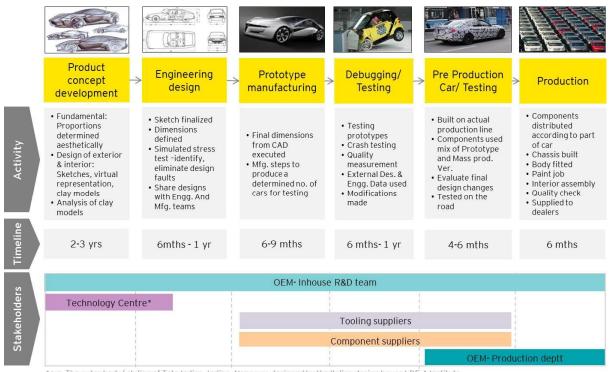
These mega projects will provide significant opportunities in key sectors like automobile, electronics, food processing etc. for the proposed TC in the long run.

5.4 Potential market for four and two wheelers

Tooling demand for automobiles can be categorised under two heads:

- Tooling demand for existing models This requirement is driven by need for expansion in production of existing models owing to high demand. This segment is however very small as compared to the overall production. From the perspective of new, it is very difficult to capture this segment as existing tooling suppliers have a cost advantage over new tooling suppliers for entry into existing models
- Tooling demand for new models This segment comprises majority of opportunity for tool makers in the car/ two wheeler markets. Demand for this segment is driven by the new car/ two wheeler launches planned in future.

Tooling required for an automobile can be divided into 4 categories. The share of these tooling varies from 2 wheelers to 4 wheelers/ cars.


- Plastic moulds (bumper, mirrors covers, dashboard, inner panels etc.)
- Pressure-die casting (Engine block, powertrain casing, pistons etc.)
- Sheet metal (fuel tank cover, skin panels, doors etc.)
- Forging tools (kick, steering gear etc.)

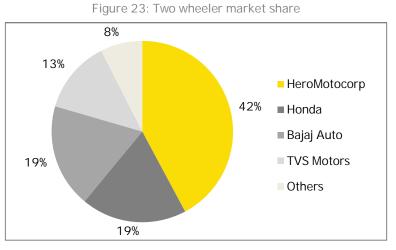
ŧ		Automobile parts		
Segment	Sheet metal	Plastic	Pressure/ die casting	Forging
Components	 Skin panels, doors Brake parts Gaskets Seating System Inner Liner Bottom Carpet Wheel Parts 2 wheeler fuel tank cover 	 Body exteriors Front and rear bumpers Front grill Splash guards Wheel fenders Hub caps Mirror housings Under body trims Floor mating Body interiors Floor mating Body biddings Doash board Instrument panel clusters Laminated wind shields Door trimmings Door handles locks and grabs Fuel tanks Oil and water container Switches, sockets & connectors Air ducts Under hood components Air intake system Cooling system Valve covers Under hood insulations Under hood insulations Under hood insulations 	 Engine block Powertrain casing pistons, Gear Box Casing, Pistons, Wheel Rim, Steering Wheel 	 Kick steering gear Gears crank shaft, Pistons, bearing parts etc
Tooling	Press Tools- punch & Dies	Moulds	Casting dies	• Forging dies

Figure 21: Tooling demand for automobiles

Key stages in automotive product development: It takes about 4-6 yrs for a new concept to translate into production. Tooling and component suppliers are typically engaged 1-1.5 yrs before the start of final production. Key stages in automotive product development along with typical activities and timelines are given below:

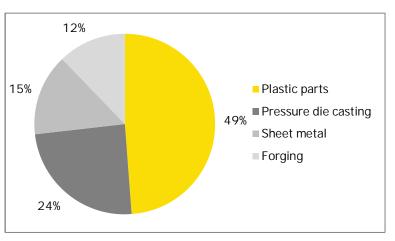
Figure 22: Automotive product development - key steps

*e.g. The outer body/ styling of Tata Indica, Indigo, Nano was designed by the Italian design house I.DE.A Institute


Tooling market for Two Wheelers

Currently about 14 million 2 wheelers are sold in the country every year. Top 4 players account for

over 90% of the market. At present, top 4 players together have about 60 - 70 two wheeler models in the market.


Plastic moulds and pressure die casting together comprise about 73% of the tooling requirement from this segment and hence will be the focus areas for two wheeler tooling.

Over the period 2015-2020, around 60 to 90 new two wheeler launches are planned by the top 4 players. The total market size for tooling from year 2015-2020 for new launches is expected to be around INR 2,800 - 4,100 crores. Out of the total market, share of plastic moulds and pressure die casting is expected to be INR 1,400 - 2,000 crores and INR 700 - 1,000 crores respectively.

Source: CMIE 2013

Figure 24: Typical breakup of tooling requirement- two wheelers

Source: Based on discussion with industry experts and commercial TRs

Table 13: New two wheeler launches by top 4	4 players over 2015-20
---	------------------------

OEM	2015	2016	2017	2018	2019	2020
HeroMotocorp	10	2		8-15 models		
Honda	8	2	1	6-10 models		
Bajaj Auto	7	1	8-10 models			
TVS Motors	8	1	NA	NA	NA	NA

Source: News articles, company announcements, subject to change as per company plans

Addressable tooling market for two wheelers during 2015-2020 is expected to be around INR 2,800 - 4,100 Cr.

Tooling market for 4 wheelers/ passenger cars

Unlike two wheelers, sheet metal and plastic moulds together comprise the majority (about 88%²⁷)

of the tooling requirement and hence will be the focus areas for car tooling.

Over the period 2015-2020²⁸, around 23 new launches are planned in small car and sedan categories. The estimated total market size for tooling for new launches from year 2015-2020 is expected to be over INR 19,500 crores. Out of the total market; share of sheet metal

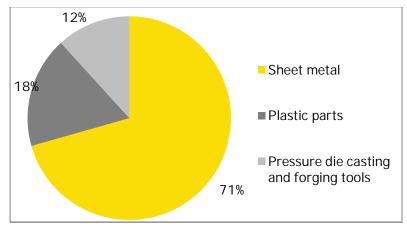


Figure 25: Typical breakup of tooling requirement - 4 wheelers/cars

Source: Based on discussion with industry experts and commercial TRs

and plastic moulds is expected to be INR 13,800 crores and INR 3,400 crores respectively.

Marque	2014	2015	2016	2017
Ford	1	1	1	1
Jeep	-	1	1	-
Audi	1	-	-	-
Dacia	-	1	-	-
Fiat	1	2	-	-
Fuso	1	-	-	-
Land Rover	-	-	-	2
Mercedes-Benz	2	-	-	-
Renault	-	1	-	-
Skoda	-	2	-	-
Volkswagen	-	1	-	-
Bajaj	1	-	1	-
Force	-	1	-	-
ICM	1	-	-	-
Leyland	1	-	-	-

Table 14: New Launches (small cars and sedans) 2015-2020²⁹

²⁷ Based on discussion with industry experts and commercial TRs

²⁸ 2014 launches may be currently in advanced stage of development

²⁹ Source: LMC Forecasts Q4 2013, Based on the current product plans of OEMs and subject to change

Marque	2014	2015	2016	2017
Mahindra	1	1	-	1
Tata	2	-	-	-
Datsun	3	-	-	-
Ssangyong	1	1	-	-
Honda	1	1	1	-
Hyundai	1	1	-	-
Maruti	1	1	-	-
Nissan	1	-	-	-
Grand Total	20	15	4	4

Source: LMC Forecasts Q4 2013, Based on the current product plans of OEMs and subject to change

Addressable tooling market for 4 wheelers during 2015-2020 is expected to be around INR 19,500 Cr.*

There is a sizable opportunity in tooling in coming years which can be tapped by domestic commercial TRs with the support of the proposed Bhiwadi TC. Majority of this opportunity lies in sheet metal work (medium size) and plastic mould works (small size) and hence would be the focus of the proposed TC.

Social and Environmental Safeguards

6. Social and environmental safeguards

6.1 Socio-economic profile of district

- Composition of workforce: The sectorial composition of the workforce in the district of Alwar has been 63.7% in primary sector, 14.7% in the secondary sector and 21.5% in the tertiary sector (including 12.7% of services) during year 2011.
- Sector composition: Alwar contributes 6.6% of the state domestic product of Rajasthan. The district domestic product of Alwar was approximately INR 17,546 crores at current prices in year 2009-10. Per capita income³⁰ of Alwar district was INR 29,300 (2009-10³¹) compared to that of INR 23,656³² in Rajasthan (INR 33,843 in India) for the same period). The following graph depicts the growth of domestic product of Alwar district over the years.

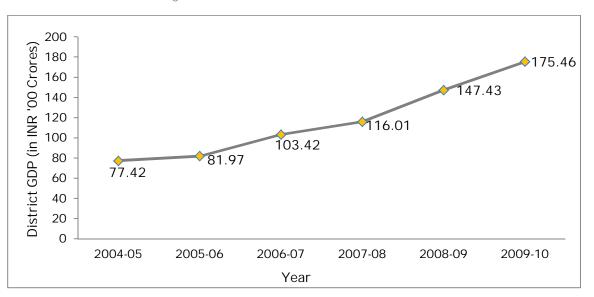


Figure 26: Growth of district GDP of Alwar

Source: Government of Rajasthan

The sector wise composition of domestic product in the district over the years has been given in the following figure.

³⁰ All Per Capita income mentioned are at Constant (2004 - 05) prices

³¹ Source: Directorate of economics and statistics, Rajasthan

³² Department of planning, Government of Punjab

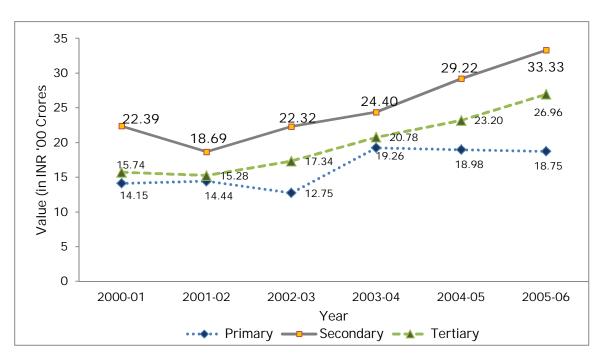


Figure 27: Sector wise composition of district domestic product

Source: Planning commission

Primary Sector: This sector accounts for approximately 24% in the total district domestic product with major contribution from agriculture, forestry & logging, fishing, mining and quarrying.

- Total geographical area of the district is 7.8 lakh hectares which is about 2.5% of the State.
 During 2010-11 the net cultivated area was 5.07 lakh hectares from which about 83% of the area is irrigated.
- The major crops grown in here are wheat, millet and mustard etc.
- Alwar region is less arid and have benefited mainly from ground water in northeast region and some surface water in the southeast region. The average rainfall in last ten years in the district is 724 mm which is uneven and scattered resulting in flood and draught situations affecting the agricultural production as well as cropping pattern in Kharif & Rabi season.

Secondary Sector: This sector accounts for approximately 42% of the total district domestic product with major contribution from manufacturing activities.

- There are 22 industrial areas developed by RIICO at Alwar district. The districts have around 87 large scale industrial units and 22,201 MSME units³³ most of which are located in various industrial areas of Alwar district.
- The MSME units have a capital investment of approximately INR 1,314 crores providing employment to approximately 89,907 persons.

³³ D.I.C data (March, 2009)

- The type of industries registered includes leather, textile, handicrafts, mineral based, agrofood based, wood based, paper based, electrical based, demand based, resource based and ancillary industries included automobiles, engineering based industries, packaging and services, textiles and leather, cement, food processing industries.
- Industries in Alwar district export products such as shaving blades, hand tools, aluminium extruded product, surgical blade, synthetic blended fabrics, empty hard gelatin capsules, leather shoes, subscriber carrier system, tyre-tube, picture tube, Chemicals, sanitary items, crockery, suiting, slate tile, different chemicals like calcium cyanide, alkalis salt, moped. PVC cable, sanitary ware, readymade garments etc.

Tertiary Sector: Tertiary sector accounts for approximately 34% of the total district domestic product. The important areas in the service industry are; trade, hotels, restaurants and transportation along with emerging sectors like IT/ITES, retail.

Education: Alwar's status in literacy was marked higher than the state average. Considering the density of population and the vast area, the school spread is average in comparison to the state average and across other districts. At the Intermediate college level, courses are available in the area of science, arts and commerce. The following table gives information regarding the number of educational institutions present in Alwar district;

Education	Number
Pre-primary and primary schools	2,036
Upper primary	2,397
Secondary / senior secondary	1,272
ITI, Engineering colleges and polytechnics	110

Table 15: Educational institutions in the district

Source: Rajasthan skill gap report, National Skill Development Corporation

There are 23 registered vocational training institutes in Alwar district. More than 2,000 aspirants got enrolled in 2009-10 in the registered training institutes. Apart from these, a number of private organizations have initiated skill training in the region. As per Rajasthan Mission on Skill and Livelihoods (RSLDC), a total of 18 partners (includes NGOs, ITIs, private institutes) are implementing skilling initiatives with 42 approved programs.

Health: Alwar is ranked 6th district in the HDI for Rajasthan in year 2009. The Human Development Index is 0.744 in year 2009 (Human development report-2009, Rajasthan). The following table gives an overview of health infrastructure in the district during 2010-11.

SN	Туре	Numbers
1.	Allopathic hospitals	66
2.	Beds per allopathic hospitals	40 (avg.)
3.	Ayurvedic hospitals	178
4.	Beds per ayurvedic hospitals	15 (avg.)
5.	Unani hospitals	2
6.	Community health centres	24
7.	Primary health Centres	72
8.	Dispensaries	5
9.	Sub health centres	576
10.	Private hospitals	75

Table 16: Health infrastructure in Alwar district

Source: Brief industrial profile of Alwar district, Ministry of MSME.

Tribal population: As per census 2011, 13.5% of the population of Rajasthan is scheduled tribe. District wise distribution of tribal population shows that concentration is found mainly in districts like Banswara, Dungarpur and Udaipur district. Nagaur and Bikaner has the lowest share of tribal population in the total population. In the district of Alwar tribal population is approximately 7.8% of the total population.

6.2 Social and environmental screening

Environmental and social screening enables the envisaged risks to be addressed at the very beginning of designing and conceptualizing the implementation of the expansion or the green-field development. The two main objectives of environmental and social screening are to:

- Enhance the environmental and social sustainability of a proposed project. This aspect of screening focuses on the environmental and social benefits of a project.
- Identify and manage environmental and social risks that could be associated with a proposed project. This aspect of screening focuses on the possible environmental and social costs of an intervention and may point to the need for environmental and social review and management.

6.2.1 Social screening

As per World Bank guidelines TCSP has a two-tier approach³⁴ to Social Screening Process (SSP) as defined by World Bank which is as follows;

- No Social Screening Process (NSSP) is applicable if,
 - Expansion/modernization of an existing TC takes place within its existing complex/campus and/or within an established and operational sites such industrial estates, industrial parks, export promotion zones etc.
 - New TC is to be established within established and operational sites such as industrial estates, industrial parks, export promotion zones etc.
- Full Social Screening Process (FSSP) is applicable if a new TC is to be established on land acquired from private title holders and/or on Government land under different tenure systems provided by the Government to establish a new Centre
- Indigenous People's Social Screening Process (IPSSP) will be undertaken
 - If a new TC is to be established in an area with high indigenous population comprising tribal populace and
 - If the area is covered by Govt. Policies and Plans such as Tribal Sub Plans and Panchayati Raj Extension to Scheduled Areas

Further, Resettlement Policy Framework (RPF) applies to all components of Technology Centre Systems Program that requires acquisition of private land and transfer of Government/public land and that are likely to have adverse social impact including involuntary resettlement.

³⁴ As per TCSP Environmental management framework - Draft (9 December 2013), MoMSME

In context of Bhiwadi TC;

- ▶ The identified site for the proposed TC at Bhiwadi;
 - Land has been allocated by GoR at the token amount of INR 1/- to O/o DC-MSME for the development of the TC by O/o DC-MSME.
 - Declaration has been received from the state government to go ahead with the TC development.
 - Clearances received from the department for being free from any kind of encumbrances and squatter settlements. Further during site visit by PMU consultants the same has been verified (Non-Incumbency certificate in respect of land is attached in Annexure 18.10).
- The allocated site for the proposed new TC at Bhiwadi is in RIICO developed industrial area. So, FSSP would not be applicable as 'the land for the establishment of the TC is not acquired from any private title holders and/or on Government land under different tenure systems'.
- Hence, in this case NSSP will be applicable since the new TC is to be established within an established and operational site of RIICO industrial estate,

Also, the proposed location of the TC is not established in an area with high indigenous population comprising tribal populace and the area is not even covered by any Govt. Policies and Plans such as Tribal Sub Plans and Panchayati Raj Extension to Scheduled Areas. Hence, this rules out the undertaking of IPSSP.

The responsibilities related to social management will ultimately reside with the respective TC. The PMU will facilitate, support the implementation of the Social Management Plans and prepare a sixmonthly report on all aspects of Resettlement Policy Framework and Process.

6.2.2 Environmental screening

TCs are like mini industries; hence planning, development and management of the TCs involve several critical environmental, health and safety obligations. Good environment practices and processes are required to be an integral part of any expansion or development of any green-field TC. The foremost and most essential stage of environment management is to conduct an environmental screening that highlights appropriate level and type of Environmental aspects and their likely associated environmental impact. The screening process aims to quickly identify those projects in which no potential environmental and social issues exist, so that only those with potential environmental and social implications will undergo a more detailed screening process. As a consequence, the outcome of the screening process will be a categorization of the project into one or more of the following categories:

- Category 1: No further action is needed, either because no significant environmental impact and risks were identified, or because sufficient environmental review has already been conducted and environmental management recommendations have been incorporated into the project;
- Category 2: Environmental sustainability elements need to be integrated into project design because there are possible environmental and social benefits, impact, and/or risks associated with the project (or a project component) but these are limited in nature, predominantly indirect or very long-term and so extremely difficult or impossible to directly identify and assess.
- Category 3: Further environmental and social review and management is needed because potential environmental and social impact or risks are associated with the project (or a project component) and it is possible to identify these with a reasonable degree of certainty. In some cases, determining the significance of these impact or risks will require environmental and social assessment which, in turn, will lead to the identification of specific environmental and social management measures that need to be incorporated into the project.

The methodology for screening includes desk study, site visit and study of available literature.

- Desk study involves collection and review of the secondary data available in the public domain. This may involve the seismic activity of the area where new TC is proposed, soil type, land use pattern, etc. This will enable one to decide the methodology and level of Environment assessment and distributing the responsibility amongst the team members.
- Site visit/s is/are conducted to collect first hand data/information about the new site. This enables a cross check of the secondary data available during the desk review and assessing the likely environmental aspects and health and safety hazards. Also, this involves interaction with different stakeholder in the region to gauge any possibility of conflict related to TC.

During the study phase the team conducted a site visit and held discussions with RICCO officials. Based on the discussion, the checklist used to conduct environment screening at the selected site in the RIICO is given below:

SN	Issues	Yes/No	Remarks
1	Will the expansion or new tool room affect the land use pattern?	No	The allotted land is in a designated industrial area earmarked for industrial operations
2	Will the development include significant land disturbance or site clearance?	No	The land is clear from vegetation and there are no trees. Only wild grass, etc. will be required to be cleared.
3	Will the project involve acquisition of land from private players?	No	The land is a property of RIICO, a Government entity, and is an earmarked industrial zone. Therefore, does not involve acquisition of land from private players.
4	The selected site is defined as industrial / commercial / residential?	Yes	Industrial zone
5	Is there any protected area or biodiversity sensitive area in the vicinity which is likely to be affected by the operations of the tool room?	No	There is no protected are of biodiversity sensitive area in the 10 km radius of the allotted land.
6	Is there any archaeological or cultural/heritage structure in the vicinity of the site?	No	There is no archaeological or cultural/heritage structure in the vicinity of the site.
7	Is there any group of indigenous people in and around the selected site?	No	There are no indigenous people in and around the selected site
8	Will the construction activity affect the surrounding around the tool room?	No	The allocated land is open from two sides and is enclosed by other industrial operations on the rest of the two sides. As such construction activity is not envisaged to have any impact of the surrounding area. However, care may be exercised to minimize dust emissions from the construction activity.

Table 17: Checklist for environmental screening

SN	Issues	Yes/No	Remarks
9	What is the source of water available at the site (Ground water, surface water, municipal supply, etc.)? Is the water requirement envisaged to put additional pressure on the water sources?	No	The water shall be supplied by the RIICO authorities (Municipal supply) as per the discussion with the RIICO officials and therefore, shall not put additional pressure on water source.
10	Will the project lead to increased air emissions in the region?	No	The TC is envisaged to insignificantly increase the air emissions in the region. Care may be exercised to minimize dust emissions from the construction activity.
11	Will the project lead to increase in noise levels in the area?	No	Increase in noise level in not envisaged in the area due to TC. However, care like acoustic enclosures for D.G set, in case installed, construction only in day time, etc. may be practiced.
12	Will the Tool room involve use of chemicals and/or solvents?	No	The envisaged TC will only use lubricating oil and water soluble coolants in the manufacturing process.
13	Will the project involve handling, storage and disposal of hazardous waste? If yes, what are the different types of waste envisaged from the TC?	No	The envisaged TC will only use lubricating oil and water soluble coolants in the manufacturing process.
14	Is the project located in the area of seismic faults? In case yes, in which seismic does the location lie?	No	The TC location falls in the Seismic zone - IV and these may be designed to be capable of handling an earthquake in case there is one in the future.
15	Is there any record of natural calamity in the area in the past? If yes, what is the probability of the same effecting the operations of TC in the future?	No	There is no record of natural calamity in the region

Apart from this, in case of an expansion of the further data/information may be collected so as to identify the existing issues and plan appropriate measures to address the same in the brown-field development. A tentative checklist that may be used for the same is enclosed as Annexure – 18.1.

Also, publically available literature review on the issues in the envisaged industrial sectors should be kept in mind. This may further help in a robust screening of the possible EHS impact of upcoming TC and may provide opportunity to MSME to have measures in place to mitigate the same.

After the initial screening, Detailed Site Assessment for the proposed TC may be conducted using the environmental assessment checklist as annexure 18.2 so as understand the existing issues and the environment feasibility with respect to the proposed development.

6.3 Gender equity and social inclusion strategy

Gender, Equity and Social Inclusion Plan (GESIP) is an important aspect of the social management framework. TCSP also aims to create more choices for young people entering labour force (including women and those who belong to vulnerable sections of society) in terms of providing opportunities for hands-on-technical skills development at varying levels and types through TCs. This is in accordance with Government of India's focus on inclusive growth focusing on poverty reduction and group equality and also with World Bank's Country Partnership Strategy with emphasis on engagement, transformation and inclusion.

GESIP will be formulated for the proposed Bhiwadi TC, during its operational phase which would not only be an outcome of the participatory process but also be rooted in the national and state policies for gender and social inclusion. Areas to be considered while preparing GESIP will also be in line with the RFD of the programme and would comprise the following (but not limited to):

- > Criteria for admission into vocational education and training for skills development
- Increased opportunities for employment to women trainees
- Timings of training
- Ease of Location of TC
- User friendly campus infrastructure esp. for differently abled sections. While developing the infrastructure for training and production sections, special care would be taken to include facilities for comfort/ ease of access for disabled persons such as;
 - Ramp for wheelchairs
 - Elevators
 - Toilets for disabled
 - Parking space
- No. of women rest rooms
- Training Aids and infrastructure
- Any other component

The PMU will prepare and monitor the strategy to help with the preparation and implementation of a GESIP with particular emphasis on inclusion of young women as well as those who belong to weaker and underprivileged sections of society. For example, those who belong to SC/STs, backward castes, minorities and those who are differently abled. Good practices coming out of the GESIP will be documented and replicated/scaled up further in new TCs.

GESIP Strategy roadmap (Suggestive)

Develop a module/ guidance notes for preparing TC specific GESIPs covering the following aspects:

- Gender gaps
- Importance of gender
- Identification of gender specific issues and constraints that hinder the implementation of GESIP (human capital, access to information, access to finance, institutional factors, socio-cultural norms, structural factors, political/ legal)
- Use of gender-disaggregated data to analyse the business environment
- Identify communication channels to reach intended program beneficiaries
- Useful links and tools
- Case studies/ best practices
- Core questions and indicators
- Capacity building of TC focal points identified to work on GESIP. Analysis of existing pool of potential trainees and their eligibility in terms of gender and social inclusion and in terms of eligibility criteria as set out in national and State policies
- Hand holding support for planning and implementing GESIP
- Setting up institutional arrangements at TC level for transparent and accountable implementation and monitoring of GESIP based, among others, on specific and measurable indicators. Develop reporting and monitoring formats to assess progress every 6 months
- Organize and facilitate monthly meetings (for 6 months) for GESIP coordinators to identify issues and best practices and synthesize learning's' within and across sectors

6.4 Sample monitoring and reporting template

The monitoring of environmental parameters would be undertaken on quarterly basis. The responsibility of the same would lie with the concerned TC and a copy of the consolidated performance will be sent to the O/o DC MSME for their records and recommendations. The suggestive template for monitoring and reporting for the same to be adopted by the TC's is given below. Further, during operation and maintenance of the TC, a number of potential EHS impact may be expected based on the kind of activities undertaken. These possible aspects are delineated in the EHS section of this DPR.

SN	Parameter	Frequency of monitoring and
		reporting
1	Water consumption	Quarterly
2	Water Cess Report	Quarterly
3	Energy consumption	Quarterly
4	Waste generation and disposal	Quarterly
	- Municipal Solid Waste	
	- Hazardous waste	
	- Non-hazardous waste	
	- Other categories	
5	Safety records	Quarterly
	Near Misses	
	First Aid cases	
6	Training	Quarterly
	No of students and other trained	
7	Air pollution and Noise pollution	6-monthly
8	Internal audit report	Quarterly
9	Update of legal register	6-monthly

Table 18: Sample monitoring and reporting template

Clearances Required and Respective Authorities

7. Clearances required and respective authorities

The proposed TC at Bhiwadi is one of the first Greenfield projects proposed under TCSP. This would include development of physical infrastructure including facilities like production, training, administration, hostel, canteen, utilities etc. keeping in view the long-term sustainability. The same would require clearances at different levels during construction such as approval of layout plan, environmental clearance, electricity and water supply connection, health and safety clearance and other associated clearances. Obtaining these clearances would be crucial for timely completion of the project and therefore needs to be planned well in advance. The following table gives indicative details of the various clearances along with the respective approving authorities and the tentative time required. However, considering that land has already been allotted by RIICO to O/o DC-MSME for development of TC, some of these regulations may not be applicable.

SN	Required clearance/ approvals ³⁶	Department /agency	Tentative time limit for approval (days)
1.	Registration under	Commercial Taxes	24 hours
	VAT Act	Department	
2.	Registration under	Commercial Taxes	24 hours
2.	CST Act	Department	
3.	Tax Clearance	Commercial Taxes	1 day in case of non-default of tax
5.	Certificate	Department	payment
	Land conversion -		• 30 days for up to 10 hectares
4.	Conversion of land	Revenue Department	
	use		 60 days for above 10 hectares
			30 days if allotment is to be made
5.	Land Allotment	Revenue Department	at the District Level
0.		Kevende Department	60 days in case Government's
			approval is required
6.	Allotment of plots in	RIICO	30 days
0.	Industrial Areas	KIICO	50 0035
7.	Issue of NOC to the	RIICO	15 days
7.	authority concerned		

Table 19: Clearances required and respective authorities³⁵

³⁵ Sources;

http://bipraj.raj.nic.in/pdf/Single%20Window%20_Eng_%20Rules.pdf

http://environmentclearance.nic.in/Auth/openletter.aspx?EC=5331

http://pib.nic.in/newsite/erelease.aspx?relid=75314 http://pppinindia.com/business-rajasthan.php

http://rerc.rajasthan.gov.in

http://www.riico.co.in/DOLR%20FORM%20E.htm

³⁶ Indicative list of clearances/ approvals

SN	Required clearance/ approvals ³⁶	Department /agency	Tentative time limit for approval (days)
	regarding		
	conversion of land		
	use		
	Environmental	Ministry of	Site/environment clearance: 90
8.	Clearance (Consent	Ministry of Environment and	days,
ο.	of Air and Water	Forests	NOC to establish: 45 days,
	Pollution)	FOLESIS	NOC to operate: 30 days, Renewal
			of consent: 30 daysLoads up to 60 HP: 66 days,
			Loads above 60 HP and up to 300
		Rajasthan Electricity	KW: 90 days,
9.	Electricity	Regulatory	 Loads above 300 HP and up to
7.	Connection	Commission	3000 KW: 180 days,
		Commission	 Load above 3000 KW and up to
			33KV: 375 days
10.	Water connection	RIICO	NA
		RIICO/ Urban	
11.	Fire safety	Improvement Trust,	NA
		Bhiwadi	
	Approval of place		
	and for permission	RIICO/ Urban	
12.	to construct building	Improvement Trust,	NA
	under the Factories	Bhiwadi	
	Act)		
		Labour and	
	Approval of factory	Employment	
13.	layout plan under	Department -	30 days
	factories Act, 1948	Factories and Boilers	
		Inspectorate	
	License for running	Labour and	
14.	the factory	Employment	45 days
	-	Department	
	Registration of	Labour and	
15.	shops and	Employment	10 days
	commercial	Department - Labour	
	establishments	Department	

SN	Required clearance/ approvals ³⁶	Department /agency	Tentative time limit for approval (days)
16.	Permission to establishments having more than 50 labours under Industrial Employment	Labour and Employment Department - Labour Department	45 days
17.	Lift	Urban Improvement Trust, Bhiwadi	NA
18.	Borewell	Central Ground Water Authority	NA
19.	Society registration	Indian societies registration act 1960	NA

Manpower and Human Resource Development

8. Manpower and human resource development

The success of an institute or an organization majorly depends upon the skill set and experienced human resource available with them. Hence, it's planning, recruitment and development is one of the most important aspects while designing a new Technology Centre. As a part of the study we have analysed organizational structures of some of the existing Technology Centres to understand the major functional areas, number and level of employees, contractual staff and other related aspects. In continuation, we have also discussed the same with O/o DC-MSME and some of the heads/GMs of the existing TRs.

As per the existing structure, there are following functional areas/streams in a TR:

- Production
- Design
- Training
- Consultancy and Marketing
- Administration and Accounting

The level of employee heading a particular Functional area/stream/department varies in some of the TCs. In an Indo German TR Administration and Accounting is head by a Manager while in Indo Danish TCs this is being headed by a Senior Manager. Sanctioned employee strength in these existing TCs typically varies from 110-120.

8.1 Proposed organisation structure

While analysing the existing organizational structures and designing the new one, we have taken some considerations into account which have been discussed and validated with the O/o DC-MSME. Some of the key considerations are as below:

- As per the decision taken in the Empowered Finance Committee, the total sanctioned strength for any new TC would be 60 in contrary to the existing ones which have total sanctioned strength of 110-120.
- In the proposed organizational structure for Bhiwadi TC, the main revenue streams are Production, Design and Consultancy and Training. These departments will be headed by Senior Managers who would directly report to GM/DGM.
- In contrary to the existing structures and target of sanctioned employee strength of not more than 60, we have proposed only 7 levels as compares to the existing structures which have 9 levels in the hierarchy. Below these levels, the resources will be hired as contractual employees on need basis.
- In the existing structure consultancy and marketing department were clubbed into one, but in the proposed structure for Bhiwadi TC it has been proposed to have marketing as a separate

department and consultancy be clubbed with the design department. This has been done after having discussions with some heads/GMs of the existing MSME TRs and understanding the customer requirements to meet the technical experts while pitching for any consulting assignment. Moreover, production projects' catering to component manufacturing or tool designing requires consulting. Most of these projects are mutually exclusive with less replicability across designs.

- The other two departments namely, Marketing and Administration and Accounting are proposed to be headed by Manager level position and they will directly report to GM/DGM. This has been done as the administration and accounts department is lean and a manager level employee would be able to manage the same. Also, as stated above, the total sanctioned strength cannot exceed 60.
- To achieve the envisaged objectives of TCSP, equal focus should be given on all the three pillars namely, production, training and business advisory. Consistent efforts will have to be made to optimize the revenue from all these areas. With this is in mind, the design and consulting department have been strengthened with a sanctioned strength of 7 experts which will mainly work in the areas of Design support, Quality systems support, Product development and engineering solutions, Project consultancy in setting up of TR, training centre and others. These experts will be supported by internal production team and external experts on need basis.
- In contrary to the sanctioned strength (4-5 employees) in marketing department of many existing TCs, the sanctioned employee strength in the proposed structure has been reduced to 2 only (1 Manager and 1 officer sales). This has been proposed keeping in mind that the GM or Deputy General Manager will devote his/her significant time in marketing and sales. Also, the respective departmental heads (Senior Managers) will be responsible for the sales and marketing efforts of their departments. Moreover, above all TCSP aims to hire Cluster Network Manager to facilitate all the market linkages for the proposed TC. The role of CNM for marketing would be very crucial and it will act as an additional arm of the marketing wing of the proposed TC. Considering all the above factors into account, a lean marketing department has been proposed for the proposed Bhiwadi TC.
- The maintenance manager though will be a part of the production department but will have an added responsibility to support the maintenance of machines in the training department as well. He/she will be supported by 1 Senior Engineer and 2 Senior Technicians.
- Based on our discussions with the O/o DC-MSME and heads of the existing MSME TCs, there was a need for dedicated manager for the short term trainings. In the structure for Bhiwadi TC, we have proposed separate manager for mechanical, electronics and short term trainings. Keeping in mind the scale and the number of trainees in the short term courses (both mechanical and electronics), the manager short term would mainly be responsible for administration, planning, quality control, issue of certificate to trainees, fee collection and others. Even one of the managers (from mechanical and electronics) would be additionally responsible for placement of

students which will include industry interaction, managing training and placement, delivering presentations etc.

- While estimating the numbers we have considered the following considerations:
 - The final semester trainees of Tool Design and Manufacturing course would also work with the design and consultancy department. This will help them in getting the hands-on experience and will also provide support the department
 - In continuation to the above, even the final semester trainees of Diploma in Tool & Die making, Post Diploma in Tool Design, Post diploma in Tool Manufacturing and CNC Machinist would work in the production department depending upon the skill set and interest area.
 - In addition to the regular employees, the training department will have the maximum number of contractual faculty in the form of guest faculty and full time contractual faculty. The figure for number of contractual faculty have been arrived at by taking various factors into account namely existing employees in training and production, the number of courses vis-à-vis the number of trainees, trainee to teacher ratio, projected revenue numbers over the years, number of shifts in production vis-à-vis the utilization and others. The TC will sub-contract the assistants in the administration, accounts and stores department for providing the support to the departmental team on day to day basis.
 - The requirement of staff for the house-keeping and security will be outsourced to a third party agency on yearly contract basis

Based on the considerations stated above, the organisational chart in figure 30 demonstrates the target organizational structure to be achieved in 5 years (by 2020-21) from inception. Though, we have provided the figures till 2025-26 since we are estimating the revenue and expenditures for next 10 years.

As highlighted above, the proposed Technology Centre at Bhiwadi will be divided into five functional areas/departments. These are:

- Production
- Training
- Design and consultancy
- Marketing
- Admin and Accounting

It is recommended that the GM and the DGM divide these five areas/departments between them, depending on competency, work-load and previous experience. Overall GM would be responsible for the management and financial health of the TC.

The chart consists of 5 levels in addition to the General Manager (GM) and the Deputy General Manager (DGM).

- The third level consists of Senior Managers as the departmental heads of design and consulting, production and training. They will report directly to either the GM or the DGM, depending upon the division of departments within them.
- The fourth level will consist of Managers who will be supporting Senior Managers in their respective domains. But for marketing and admin and accounting department, as explained above manager will head this department and directly reporting to GM or DGM.
- The fifth level consists of senior engineers (Sr. Engg.) and Sr. Officers. Level six consists of engineers (Engg.) and officer / foreman.
- > The final level consists of senior technicians with requisite operational level expertise.

The responsibilities of each position and qualifications required to fulfil roles are covered in the following section. Hence, the recommended final organisational structure for the proposed TC is based on experience from established MSME technology centres, discussions with O/o DC-MSME and heads of some of the existing TCs, expert opinion and knowledge and experience with organisational planning.

S. No.	Designation	Proposed Sanctioned Strength
1.	General Manager	1
2.	Deputy General Manager	1
	Department	
3.	Administration and accounting	7
4.	Design and consultancy	7
5.	Production	20
6.	Training	22
7.	Marketing	2
	Total	60 ³⁷

Table 20: Sanctioned strength of key resources

In addition to the above sanctioned strength, we have recommended additional employees as contractual employees. Based on the requirement, we have estimated around 171 contractual employees (159 in training & 12 in production) by end of FY 2026. The figure for number of contractual employees have been arrived at by taking various factors into account namely – existing employees in training and production, the number of courses vis-à-vis the number of trainees, trainee to teacher ratio, projected revenue numbers over the years, number of shifts in production vis-à-vis the utilization and others.

³⁷ The details and basis of number of employees is provided in the next section

While considering the ratio for trainee to teacher, we have used the following assumptions after discussion with existing GMs and O/o DC-MSME.

- Trainee to teacher ratio for theory classes 60:1; with theory classes conducted for 20% of time
- Trainee to teacher ratio for practical classes 20:1; with practical classes conducted for 80% of time

After calculating the weighted average of the above ratios we got the overall trainee to teacher ratio of 28:1. Post discussions, we have considered trainee to teacher ratio of 25:1 for calculating the number of employees in the training department (regular and contractual faculty) keeping in mind the employees who will be on leave at any given point of time.

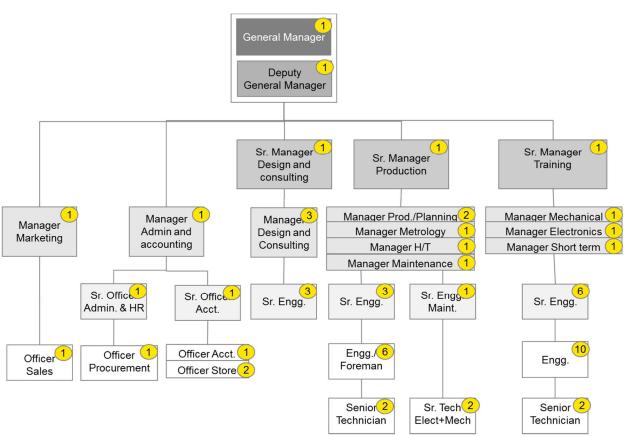


Figure 28: Proposed organisation structure

8.2 Phase wise induction of human resources

As discussed in the above sections, the proposed TC will be have 60 employee as sanctioned strength and the target structure will be achieved within 5 years from 2015-16. Therefore due care have been taken during the study to phase the recruitment of employees. On the same lines, initially some positions have been proposed to be vacant when establishing the organisational structure of the TC. This has been proposed keeping in mind the time it will take to be fully

operational. Vacant positions will also create incentives for high performers to obtain higher positions when the time comes for fulfilling these.

The phase wise estimated staffing over next few years as part of human resource planning has been done through the identification and analysis of the various types of activities and skill sets required for smooth and efficient functioning of the proposed TC. Multiple rounds of discussions with industry experts, World Bank, O/o DC-MSME and heads of some of the existing MSME TCs have been undertaken to arrive at the requirement of human resources needed to meet the business objectives in the short and long term of the proposed TC.

The following provides the details of recruitment in various phases over next few years. This phasing is suggestive and can be modified based on the need and revenue generating capabilities of the TC during operations. Some of the considerations which have been taken into account while recommending the phasing of employees are as below:

> Year 2015-16: 2 staff members

- GM will be involved in project implementation and work out the strategy for marketing, training, production and consultancy with the help of CNM and TP. GM will also monitor the progress of construction and procurement of machines etc. GM will also be responsible for planning of recruitment of required manpower.
- Manager Administration & Accounts will be responsible to get statutory registrations like sales tax and PF, opening of TC's bank account, getting power and water connection etc.
 Manger will also support GM in recruitment of people in the coming years.

> Year 2016-17: 20 staff-members

- Three senior managers will be recruited to further recruit staffs in respective departments. These would also be responsible for orientation and training of respective staff members.
- Senior officer administration & HR will be recruited to support the GM and manager administration and accounts for further recruitment of staff and forming of systems to conduct day to day administrative activities
- The first long term training programme will commence this year and one senior engineer, one engineer and one senior technician will be recruited for installation of machines and conducting theory and practical training
- By second half of this year, production and design staff will be recruited. The respective senior managers would be responsible for orientation and training of these staff members. These staff will undergo training (preferably at another Tool room at Aurangabad and/or Ahmedabad) for a period of 3-6 months to make them fully trained before start of the operations of the proposed TC

- Manager maintenance and senior technicians will be recruited to install and commission machines for production and training. They will also be responsible for installing the power supply system
- Stores and accounts officers will be recruited to maintain statutory records and support the operations
- > Year 2017-18: 42 staff- member
 - Production will commence during this phase and hence more engineers and senior engineers will be recruited. The number of staff has been decided based on estimated number of machines commissioned during this phase and number of shifts in production
 - This year some short term training courses will commence along with the starting of the second year of the long term course.
 - Officer sales will be recruited to support manager marketing for preparation of detailed marketing plan of the TC. The staff would be engaged in various marketing activities for wider reach of the proposed TC across the region. This would be crucial for promotion of the TC and would help departments increase their revenue
 - The Design and Consultancy department has been planned to commence its commercial services during this year and hence manager and senior engineers will be recruited to meet the requirement.
- > Year 2018-19: 52 staff members

The proposed TC would be fully operational by this period with activities in production, training, design and consultancy etc. Additional staff will be recruited for smooth undertaking of the gradual increase in the activities across all the departments.

It is recommended to leave the position of the DGM vacant initially. The position of the DGM can be filled by a high performing senior manager within design and consulting, production or training depending upon the requirement, skill set and experience.

Rest of the positions will be filled gradually as TC activity escalates and the manpower requirements increase. The tables below summarise the phasing of the organisational completion within each area; Administration and Accounting, Design and Consulting, Production, Training and Sales and Marketing, in addition to the positions of the GM and DGM. The numbers represent the numbers of employees within the specific position at a given point in time. The timeline spans from 2015 to 2026.

Year	15-16	16-17	17-18	18-19	19-20	20-21	21-22	22-23	23-24	24-25	25-26
Full time employees											
Total	2	20	42	52	57	60	60	60	60	60	60
Contrac	Contractual employees										
Total	-	3	21	44	75	108	119	131	144	151	159

Table 21: Summary of phase wise induction of resources

Below tables depicts the hiring of number resources in every department every year starting from 2015-16 to 2025-26. In the year 2020-21, the TC is recommended to hire the complete sanctioned strength of 60 employees.

Table 22: Department wise induction of fulltime resources

General Manager								
Year	15-16	16-17	17-18	18-19	19-20	20-21	25-26	
General Manager	1	1	1	1	1	1	1	
Total	1	1	1	1	1	1	1	
		Deputy	y General N	lanager				
Year	15-16	16-17	17-18	18-19	19-20	20-21	25-26	
Deputy GM	-	-	-	-	-	1	1	
Total	0	0	0	0	0	1	1	
		Administr	ation and A	Accounting				
Year	15-16	16-17	17-18	18-19	19-20	20-21	25-26	
Manager Admin.	1	1	1	1	1	1	1	
and Accounting			·		·		·	
Sr. Officer HR	-	-	-	-	-	1	1	
Sr. Officer	-	1	1	1	1	1	1	
Accounting								
Officer	_	-	1	1	1	1	1	
Procurement								
Officer Store	-	1	1	2	2	2	2	
Officer Admin	-	1	1	1	1	1	1	
Total	1	4	5	6	6	7	7	
			in and Cons	Ŭ				
Year	15-16	16-17	17-18	18-19	19-20	20-21	25-26	
Senior manager		1	1	1	1	1	1	
Manager			2	2	3	3	3	
Sr. Engg.			2	3	3	3	3	
Total	0	1	5	6	7	7	7	

			Production	l			
Year	15-16	16-17	17-18	18-19	19-20	20-21	25-26
Senior Manager	-	1	1	1	1	1	1
Manager Prod/			1	1	2		
Planning	-	-	1	1	2	2	2
Manager Metrology	-	-	1	1	1	1	1
Manager H/T	-	-	1	1	1	1	1
Manager		1	1	1	1	1	1
Maintenance	-	I	I	I	I	I	I
Sr Engg.	-	-	-	-	1	1	1
Maintenance		-	-	-	I	I	I
Sr Engg.	-	3	3	3	3	3	3
Production		5	5	5	5	5	5
Engg. / Foreman	-	2	4	6	6	6	6
Senior Technician	-	1	2	2	2	2	2
Senior Technician							
Maintenance	-	1	1	2	2	2	2
(Mech + Elect)							
Total	0	9	15	18	20	20	20
			Training				
Year	15-16	16-17	17-18	18-19	19-20	20-21	25-26
Senior Manager	-	1	1	1	1	1	1
Manager	-	-	1	1	1	1	1
Mechanical							
Manager							
Electronics	-	-	1	1	1	1	1
	-	-	1	1	1	1	1
Manager Short	-	-	-	-	1	1	1
term	-		-	-	-	1	1
term Sr. Engg.	-	1	- 5	- 6	- 6	1	1
term Sr. Engg. Engg.		1	- 5 4	- 6 8	- 6 10	1 6 10	1 6 10
term Sr. Engg. Engg. Senior Technician	-	1	- 5 4 2	- 6 8 2	- 6 10 2	1 6 10 2	1 6 10 2
term Sr. Engg. Engg.	-	1 1 1 4	- 5 4 2 14	- 6 8 2 19	- 6 10	1 6 10	1 6 10
term Sr. Engg. Engg. Senior Technician Total	- - - 0	1 1 1 4 Sale	- 5 4 2 14 s and Mark	- 6 8 2 19 eting	- 6 10 2 21	1 6 10 2 22	1 6 10 2 22
term Sr. Engg. Engg. Senior Technician Total Year	-	1 1 1 4 Sale 16-17	- 5 4 2 14 s and Mark 17-18	- 6 8 2 19 eting 18-19	- 6 10 2 21 19-20	1 6 10 2 22 20-21	1 6 10 2 22 25-26
term Sr. Engg. Engg. Senior Technician Total Year Manager Marketing	- - - 0	1 1 1 4 Sale	- 5 4 2 14 s and Mark 17-18 1	- 6 8 2 19 eting 18-19 1	- 6 10 2 21 19-20 1	1 6 10 2 22 20-21 1	1 6 10 2 22 25-26 1
term Sr. Engg. Engg. Senior Technician Total Year	- - - 0 15-16	1 1 1 4 Sale 16-17	- 5 4 2 14 s and Mark 17-18	- 6 8 2 19 eting 18-19	- 6 10 2 21 19-20	1 6 10 2 22 20-21	1 6 10 2 22 25-26

8.3 Roles and responsibilities

While conducting the study, we had series of discussions with the O/o DC-MSME and some heads/GMs of existing MSME TRs on the prospective roles and responsibilities of the employees for the Bhiwadi TC. Below is summary of the suggestive roles and responsibilities (including the minimum qualification levels) of the individual employees which can be referred to while recruiting.

Profile/	Minimum	Minimum	Other Skill set/ requirements	Key Responsibilities
Designation	Qualification	Experience	other okin set/ requirements	Key Kesponsbillites
General Manager	B.Tech (Mechanical) with MBA or M.Tech	15 Years with 8 years in similar role	 Tool Manufacturing/Design/ Auto-Product development/ Training. Experience in Project Implementation will be preferred 	 Over all responsible for the administration and financial health of the TC Key responsibility areas include (but not limited to); Marketing, Administration, HR, Accounts, Production, Design & consultancy etc. Responsibility for achieving the target KPIs set by the GC
Deputy General Manager	B.Tech (Mechanical) with MBA or M.Tech	12 Years with 5 years in similar role	 Tool Manufacturing/Design/ Auto-Product development/Training. Experience in Project Implementation will be preferred 	Head of Production, Design, Consultancy and Training
Manager - Admin. and Accounting	CA/ICWA or MBA with bachelor's degree in	8 Years with 3 years in similar role	 Experience in the area of Administration, HR and Accounting The Manager must also have basic knowledge of government laws, 	 Head of Accounts, Administration and HR: General housekeeping of TC Bookkeeping, accounting and finance including financial analysis

Table 23: Ro	les and responsil	bilities of propo	sed positions
--------------	-------------------	-------------------	---------------

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
	Commerce/ Accounting / Finance		 regulations and state specific compliances Familiarity with ERP/accounting softwares 	 TC security Payroll Procurement management and store keeping
Sr. Officer - Admin. & HR	MBA or Equivalent	5 Years	 Experience in the area of HR and Administration Familiarity with Industrial laws and compliances 	 Housekeeping of TC Security systems operation Transport System and management Payroll
Sr. Officer - Accounting	Bachelor's degree in commerce/Acco unting / Finance with M.Com. or MBA	5 Years	 Experience in accounting and Tax Should be familiar with latest accounting software 	 Bookkeeping and accounting Financial analysis
Officer - Accounting	M. Com. or MBA or Equivalent in Accounting	3 Years	 Experience in accounting and Tax. Should be familiar with latest accounting software 	 Bookkeeping and accounting Handling of Cash, Banking etc.
Officer Store	Diploma in Mechanical or Equivalent	3 Years	 Experience in Store keeping, including inventory management Experience in Computer systems / software for store keeping operation 	 Managing store Issue of consumable and non-consumable stores and keeping records
Officer Procurement	M. Com. or MBA or Equivalent	3 Years	 Experience in Procurement processes Knowledge of Govt. Procurement rules 	ProcurementVendor Development

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
Senior manager - Design & Consultancy	M.Tech in Mechanical engineering.	10 Years with 5 years in similar role	 and processes will be desirable Experience in product modelling, design, tool design Proficiency in one of the areas in Tool Design, either Sheet metal press tool or Plastic mould Practical Experience in use of CAD/CAM/CAE in product and tool design Experience of Tool trial Experience of assembly and inspection of Jigs and Fixtures Knowledge of Quality systems Experience in technical consultancy will be preferred 	 Responsible for designing tools, moulds and die casting w.r.t. New product development planning and its execution Quality systems Value engineering Tool try outs and proving Consultancy to MSMEs In charge of Incubation centre Helping members of Incubation centre in getting orders and execution of the same
Manager- Design & Consultancy	B. Tech in Mechanical engineering.	8 years with 3 years in a similar role	 Experience in product modelling, design, tool design Proficiency in one of the areas in Tool Design, either Sheet metal press tool or Plastic mould Practical Experience in use of CAD/CAM/CAE in product and tool design Knowledge of Tool trial 	 Designing tools, moulds and die casting Product development Quality systems Value engineering Tool try outs and proving Consultancy to MSMEs: Deliver functional consulting on assigned areas to ensure MSMEs are able to successfully use the

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
			 Experience of Jigs and Fixtures Knowledge of Quality systems Experience in technical consultancy will be preferred 	solutions
Sr. Engineer- Design & Consultancy	B. Tech in Mechanical engineering	5 Years	 Experience with designing sheet metal tools, plastic moulds or die casting Knowledge of high end CAD software, analysis software and metrological instruments Experience of consultancy in the areas of product development, quality systems and value engineering 	 Designing tools, moulds and die casting Product development Quality systems Value engineering Tool try outs and proving Consultancy to MSME
Sr. Manager Production	M. Tech. in Mechanical Engineering	10 Years with 5 years in similar role	 Experience with tooling or manufacturing and at least 3 years of leadership experience The Sr. Manager should have been exposed to metal or plastic mould and/or die casting The Sr. Manager should also have hands on experience with CAD and CEM software, and programming of CNC machines 	 Overall responsible for Production, production planning and control, including quality assurance of Tools and components, Tool trials etc. Overall responsible for relevant software CAD/CAM/CNC Overall responsible for machine maintenance and upkeep Ensuring on-time deliveries Deliver budgeted quantities as per required

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
Manager- Production	B. Tech in Mechanical Engineering	8 Years with 3 years in a similar role	 Experience to debug tool, analyse problems, root causes & take corrective improvement actions when tool is not able to produce as per part specifications Experience with tooling or manufacturing Knowledge of metal or plastic mould and/or die casting Hands on experience with CAD and CAM software, and programming of CNC machines Experience to debug tool, analyse problems, root causes & take corrective improvement actions when tool is not able to produce as per part specifications 	 quality standards Manpower deployment and controlling manpower costs as per target Production CAD/CAM/CNC programming and operation Responsible for timely delivery of tools and components Responsible for Tool Trial Responsible for Consultancy to MSMEs Should have good knowledge of Quality and inspection
Manager- Production planning	B. Tech in Mechanical Engineering	8 Years with 3 years in a similar role	 Experience in tooling or manufacturing Experience in metal or plastic mould and/or die casting. Experience in CAD and CAM software, and programming of CNC machines Knowledge of ERP software 	 Preparation of stage wise / machine wise scheduling in co-ordination with head of production team Production Planning and Control, and further despatching of jobs Estimate & manage to get raw materials and component requirements Responsible from issue of raw materials to

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
				despatch of final product to customers including routing
Manager- Metrology	B. Tech in Mechanical Engineering	8 Years with 3 years in a similar role	 Practical knowledge and experience of handling CMM and measuring Instruments Knowledge of Quality assurance and systems 	Head of QC and metrology section with in production
Manager- Heat treatment (HT)	B. Tech in Metallurgy/Mec hanical Engineering	8 Years with 3 years in a similar role	Practical Experience in heat treatment of engineering products including tool steel	Head of heat treatment section and responsible for heat treatment operation
Manager- Maintenance	B. Tech in Mechanical/ Electrical/ Electronic Engineering	8 Years with 3 years in a similar role	 Knowledge of Installation and commissioning of machines and equipment Practical experience in preventive and repair maintenance of machines and equipment Practical experience of maintaining utility equipment like sub-station, UPS, water treatment plant, DG set etc. 	 Head of Machinery maintenance including preventive maintenance, repair etc. of machines and equipment Responsible for Power supply, energy conservation water system in the campus
Senior Engineer-	B. Tech in Mechanical	5 Years	 Knowledge and experience in tool manufacturing, metal cutting through 	 CNC machine programming and supervision of machining and assembly of tools

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
Production	Engineering		 CNC programming and operation Experience of precision components Tool assembly Tool trial 	 Machinery maintenance Quality assurance Team work
Engineer- Production	Diploma in Tool & Die Making or Equivalent	3 years	 Knowledge and experience in tool manufacturing, metal cutting through CNC programming and operation Tool assembly Tool trial 	 CNC machine programming and operation Assembly and trial of Tools
Foreman	Promotion from Senior Technician	3 years as Sr. Technician	 Knowledge and experience in tool manufacturing, metal cutting through CNC programming and operation Tool assembly Tool trial 	CNC machine programming and operation Assembly and trial of Tools
Senior Technician (Electrical maintenance / Mechanical maintenance/ tool assembly & manufacturing)	Diploma/ ITI in respective areas	1 year after Diploma or 5 Years after ITI in respective areas	Experience in Maintenance of machines and equipment (electronics or mechanical)/ Experience in CNC machine programming and operation/ Experience in Tool assembly and trial	 CNC machine programming and operation Assembly and trial of Tools Also work as Maintenance Technician in Mechanical/ Electronics

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
Senior Manager- Training	M. Tech. in Mechanical engineering	10 Years with 5 years in a similar role	 Experience with tooling / manufacturing and training in metal cutting / tool engineering / industrial automation systems Experience with designing curriculum and preparing lecture plans and course material for long term and short term training 	 Overall responsible for planning and executing training activities Overall responsible for designing curriculum and preparing lecture plans and course material Responsible for Quality and Certification in training
Manager Training- mechanical/ Electronics	B. Tech. in Mechanical or Electronics or Electrical Engineering	8 years with 3 years in a similar role	 Experience with tooling / manufacturing and training in metal cutting / tool engineering / industrial automation systems Experience with designing of curriculum and preparing lecture plans and development of course material for long term and short term training 	 Planning and implementing of training activities in manufacturing and tooling, Mechatronics, IT etc. including market assessment to discover training demand Evaluation of training activities and identify improvements Curriculum design Lecture plans and course material
Senior Engineer- Training	B. Tech. Mechanical or Electronics/ Electrical	5 Year	 Experience with tooling / manufacturing and training in metal cutting / tool engineering / industrial automation systems Experience with designing curriculum and preparing lecture plans and development 	 Undertake training courses in manufacturing/ tooling and related courses

Profile/ Designation	Minimum Qualification	Minimum Experience	Other Skill set/ requirements	Key Responsibilities
Engineer- Training	Diploma in Tool & Die Making/Electron ics	3 Years	 of course material for long term and short term training Knowledge of CAD/CAM/CNC Experience in tooling / manufacturing and training in metal cutting / tool engineering / industrial automation systems 	 Undertake training courses Demonstrate practical skills to trainees Deliver theory lectures
Manager- Sales & Marketing	M. Tech. in Mechanical Engineering	10 years with 5 years in similar role	 Marketing of TC product range Supporting Sr. Managers of respective departments to acquire orders Follow up with prospective and existing customers 	 Plan and evaluate marketing activities towards all stakeholders Stakeholder analysis Sales according to targets
Sales Officer	MBA or Equivalent	3 years	 Experience of invoicing and sales accounting Payment collection from customers Should be familiar with Computerised accounting procedures 	 Execute marketing and sales activities Sales invoicing, taxes etc.

8.4 Governance structure

8.4.1 Selection of the Governance Model for the new TCs

All the existing 18 TCs have been set up under the Societies Registration Act, 1860. The management of affairs mainly rest with the Governing Council constituted by MoMSME, Government of India with the Additional Secretary and Development Commissioner of Ministry of Micro, Small and Medium scale Enterprises (DC-MSME) acting as the President of the Society and Chairman of the Governing Council (GC).

This arrangement has proved effective as most TCs have supported local MSMEs well and have performed financially. Each TC has a separate society and has very decentralised authority and governance structure. DC, MSME being chairman and other two members Director –Tool Room and representative of IF-wing of MoMSME are common members in all 18 GCs.

During the study and preparation phase of this DPR, we analysed different governance models for the new TCs. Under Indian law, there are three legal forms that exist for non-profit organisations. Mainly two forms are relevant for the purpose of the TCSP Program.

- Society as per society Registration Act, 1860
- Section 25 companies as per Companies Act, 1956

The two forms mentioned above have distinguishing features as per their respective acts.

Features	Registered Society	No-for-profit Company u/s 25
Setting up and running	Nominal	Comparatively more than the
cost		society & trust
Formation	Simple	Takes 2-3 months, required to
		comply with provisions of
		Companies Act
Jurisdiction	Registrar of society	Registrar of companies
Meetings	Annual Meeting As per Law.	Quite Extensive as per the
	Governing Body meeting as per	provision of Company Law
	the rules of Society.	
Governance	Vests with governing body as per	Vests with Board of directors &
	the rules framed by them. Law	management committee.
	specifies no rules & regulation	Specific provisions for quorum,
		adoption, ratification and
		compliance

Table 24: Comparison of Society Registration Act and Companies Act
--

Features	Registered Society	No-for-profit Company u/s 25
Membership transfer	Impossible	Free or control as per desire
Statutory Regulations	Limited	Exhaustive
Transparency	Transparent	Fully Transparent
	(As society act is not so	(The Companies Law is quite
	exhaustive requiring statutory	exhaustive requires specific
	compliance for each and every	compliance in each activity of
	step of business operation)	business operation)
Perception commercial	Less comfortable	More comfortable
lenders		
Interest of commercial	Less secured, as Act doesn't	More secured, as exhaustive
lenders	provide any rules regarding how	provisions in companies act
	the interest of lenders can be	about how the interest of
	settled in the case of bankruptcy	lenders can be secured by
		distributing the assets of the
		company in case of liquidation
Accountability	More (Can be established, if the	More, (As per the statutory
	rules, regulation and by-laws of	regulations)
	the Society are framed in manner	
	to fix accountabilities)	
Financial Management &	Best practices can be adopted	Exhaustive provisions in
Disclosures	through framing regulations.	Companies Act providing for
	However, Act doesn't provide	financial management and
	anything specific on this	disclosure policies
Modification of Objects	Easy Legal Procedure	Complicated legal procedure
Penalties	Lesser	Higher
External audits	Subject to lesser audit	Greater degree of control
	requirement. As Act doesn't	through Auditing framework as
	provide for various kind of audits	per companies Act. E.g.
	of the Society. However,	Statutory Audit, tax audit, cost
	generally the society provide for	audit etc.
	audit regulations and compliance	
	to audit observations as part of	
	their bye-laws and rules and	
	regulations	
Basic Document	Memorandum of Association	Memorandum of Association
	Articles of Association with rules	Articles of Association
	& regulations	

The Table above outlines difference in the two prominent governance structures. Generally, Companies are construed as more reliable legal entity in the commercial world or to attract private participants because the transparency inherits from the statute itself under which it is incorporated.

However, a society may also bring forward discipline by framing rules and regulations of the society through the governing body. This fact together with the minimal cost of setting up and running and simplicity in its formation makes the society a popular model in the case where purpose is not to finance the cost of the project but optimise the cost and delays.

The existing 18 TCs formed as per society model have made it proven model because of the following facts:

- Very clear cut authority flow and ownership by other GC members and GMs (as permanent member secretary). It instils competition among individual TCs to excel.
- The Incentive schemes work better in small groups (individual TCs). It also allowed better performing and surplus generating TCs to retain surplus fund and deploy them best suited to them.
- Rules and regulation framed by the societies fix the accountability of various authorities in organisation.
- Delegation of financial power has been developed which fix the authority of each of the officer in management body.
- Well established system for procurement is being followed as per Gol guidelines and GFR, 2005
- Matters have been identified on which decision van be taken only by the Governing Body.
- Annual accounts are audited by the statutory auditors well in time and audit report is placed and adopted by the Governing Body in its annual meeting
- Compliance to audit observations are strictly complied with and observed by the O/o DC-MSME

Overall the present system is working well and at this stage raising fund is not the sole purpose, it is recommended to continue with the societies for proposed Bhiwadi TC with following few minor modifications

- **•** Governing council can make provision for more membership from OEMs
- Provision of membership from state technical University who controls most private Engineering colleges
- > One more sector expert in the GC
- GC usually meets once in six months only and it is suggested to have one executive committee or advisory committee consisting of local MSME/Cluster association members,

sector experts and other stakeholders who can meet quarterly and can advise TCs and can also be delegated with powers higher then GMs

8.4.2 Composition of the Governing Council

As mentioned above, the proposed TC will be set up under the Societies Registration Act, 1860. The management of affairs primarily rest with the Governing Council constituted by MoMSME, Government of India with the Additional Secretary and Development Commissioner, Ministry of Micro, Small and Medium Enterprises (DC-MSME) acting as the President of the Society and Chairman of the Governing Council of each TC.

The Governing Council of TC will comprise four types of members as explained below:

Representation in the Governing Council	Suggestive recommendations
(i) Ex-officio members	
 Representative from Government of India Development Commissioner, Ministry of MSME as Chairman, Industrial Advisor or Director of TR or Program Coordinator, Director DI-MSME of the respective States, Representative from Integrated Finance Wing of the Ministry of MSME. Representative from State Government Official from concerned industry department, Official from concerned department of technical education/training. 	 Secretary, Industries Commissioner/Director, Technical Education & Training
(ii) Institutional members	
 Representative of state level industrial promotion body Representative of association of small scale industries Representative of the local chambers of commerce and industries/ Industry Promotion Institution/NSIC. 	 RIICO Auto components manufacturer samiti, Alwar (ACMS) Bhiwadi Manufacturers Association (BMA)/Bhiwadi chamber of commerce & industries (BCCI)
(iii) Professional and other members	

Table 25: Governing Council of Bhiwadi TC

Representation in the Governing Council	Suggestive recommendations
 One expert representing the fields of finance & accounts/ law/management, One representative of small scale tool producers, One representative of OEM, One representative of major auto component manufacturer in the region Representative of Technical University of the state which governs engineering colleges 	 To be nominated by O/o DC-MSME To be decided by O/o DC-MSME Maruti Suzuki/Honda Siel/Hero Motorcorp Sriram Pistons Rajasthan Technical University, Kota
(iv) MD/Executive Director/GM/PD of the Society	
On his appointment, the Executive Director or General Manager of the Society shall automatically become ex-officio member of the Governing Council during the tenure of his office, as <i>Member Secretary</i> .	

Role of the governing council

The Governing Council will discharge such duties and responsibilities, exercise such powers and undertake and carry out such activities as considers essential with a view to attain the aims and objectives as per the Memorandum of Association of the Society, with particular reference to the following;

- To prepare and execute plans and programmes for the establishment of the TC based on the plan of operation and to carry on its administration and management after such establishment.
- To prepare, consider and approve the policies and strategies of the Society and to reconsider and amend the said policies and strategies whenever appropriate.
- To receive grants and contributions and to have custody of the funds of the society.
- To prepare, consider and approve the budget estimates of the society every year.
- To prepare and maintain accounts and other relevant records and annual statement of accounts including the balance sheet of the society.
- To open, conduct and prescribe courses of study, training and research in tool management and allied subjects.
- To fix and receive such fees and other charges from persons undergoing training as may be necessary.
- To prescribe rules and regulation for the admission of candidates to the various courses of training.

- To lay down standards of proficiency to be demonstrated before the award of diplomas, certificates and other distinctions to the trainees.
- To institute and award scholarships, prizes and medals.
- To provide for and supervise the residence, health, discipline and the well-being of the trainees in the Society.
- To create subject to the provisions of Rule 68 supra technical, training, research, administrative, ministerial and other posts under the Society and to make appointments thereto on such terms and conditions as deemed appropriate.
- To co-operate with any other organisation in the matters of education, training, management and allied subjects.
- To enter into arrangements for and on behalf of the society.
- To sue and defend all legal proceedings on behalf of the Society.
- To appoint committee or committees for the disposal of any business of the Society or for advice in any matter pertaining to the Society.
- To delegate to such extent it may deem necessary any of its power to any officer or committee of the Governing Council.
- To consider and pass such resolution on the Annual Report, the annual accounts and the financial estimates of the Society as it thinks fit.
- To make, inform, adopt, amend, vary or rescind from time to time rules and by-laws for the regulation of and for any purpose connected with the management and administration of affairs of the Society and for the furtherance of its aims and objectives.
- To make, adopt, amend, vary or rescind from time to time rules and by-laws for
 - For the conduct of the business of the Governing Council and the committee(s) to be appointed by it,
 - For delegation of its powers,
 - For fixing quorum.
- To sell, lease, mortgage or exchange and otherwise transfer all or any portion of the properties of the Society.
- To establish a provident fund for the benefit of the employees of the Society.
- To perform such additional functions and to carry out such duties as may from time to time be assigned to it by the Society.
- To establish procedure in respect of services and technical advice to be rendered to the industry by the Society and the levy and collection of charges for the same.
- To delegate its powers as may be deemed fit and appropriate but not the powers for:
 - Altering, extending or abridging the purposes of the TC within the meaning of the Societies Registration Act, 1860.
 - Amalgamating the TC either wholly or partially with any other TC having similar aims and objectives.

- Altering, extending or abridging the Rules and Regulations of the TC within the meaning of the Societies Registration Act, 1860.
- Shifting the existing location or altering the capacity of the TC.
- Making capital investment exceeding the approved budget.
- Borrowing money except for working capital exceeding the approved budget.
- Transferring by way of mortgage, pledge, hypothecation or otherwise any assets, moveable or immovable, except as security for working capital.
- Appointing bankers and auditors.
- Generally anything extraordinary and of major importance.
- Roles and responsibilities of the member secretary (GM/PD/MD)
 - Plan, direct, co-ordinate, organize and supervise day-to-day work of the society.
 - Implement policies, strategies and such programs of the society and attend to all statutory requirements imposed thereon.
 - Prescribe the functions, duties and responsibilities for all officers and staff of the society, give them appropriate instructions and exercise such supervision and disciplinary control as may be necessary.
- ▶ Roles and responsibilities of the O/o DC-MSME in management of the TCs
 - Support DC-MSME in executing the responsibilities as the Chairman of the Governing Council of all TCs.
 - Support in implementation of strategic projects and policies from the central to the TC levels.
 - Act as the nodal point of coordination between the TCs and the DC-MSME.

Marketing Plan

9. Marketing plan of Bhiwadi TC

The marketing of Bhiwadi TC would require specific actions in order engage with potential customers and clients in the catchment area. A series of activities is therefore required to be planned for effective marketing of Bhiwadi TC to promote its business, product or services. The broad suggestive framework for marketing of Bhiwadi TC would include the following;

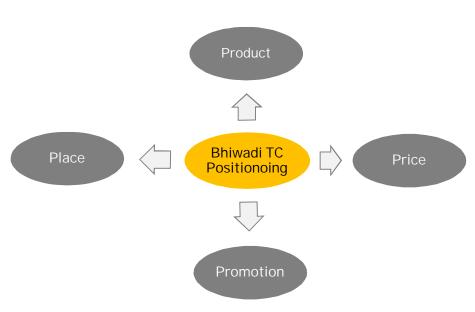
Figure 29: Suggestive framework for marketing of TC

Defining Vision Mission Values and Objectives of the TC

Formulate Strategy

Work closely with the CNM Engaging internal stakeholders Increasing visibility to external audience and work on the recommendations Competitive pricing

Methodology


Product/Service positioning Website TC fast facts TC online email newsletters High quality promotional videos High quality print promotions Industry tie-ups Consistent social media presence

In line with the above suggestive framework, a detailed Go to Market plan of the proposed TC will be prepared subsequently by the Cluster Network Manager (CNM) along with the GM and marketing team of the TC. The role of CNM for marketing would be very crucial and will act as an additional arm of the marketing wing of the proposed TC. It will further strengthen its market linkages with the MSMEs in the cluster it serves. CNM will also market the TC within the trade and industry associations, academia, educational institutions, applied research institutions, service providers, other government support institutions, workers and skill seekers.

As part of the marketing initiative, CNM would work closely with MSME clusters in the region to understand their needs and requirements and involve OEMs/ tier 1 players in the region. Based on the observations, the marketing strategy of the TC would be customized targeting various focus groups including technical and training institutes. Further, the CNM would be part of the consolidation of the results and recommendations of the diagnostic into a strategic plan for cluster development. The CNM would also represent the TC in various industry oriented outreach programmes and workshops. This would help in two ways; promoting the TC and understanding industry perspective and future areas of focus. The same will help to identify key areas of focus for the TC and align the future marketing strategies accordingly.

Hence, the CNM would promote the TCs in among the newly developed partnerships for mutual benefit around identified programmes / initiatives.

The plan should clearly position the proposed TC's marketing mix with respect to its four Ps - product, price, place and promotion. The suggestive points which needs to be taken care while designing the Go To Market Plan for the Bhiwadi TC has been highlighted below:

Figure 30: Positioning of marketing mix for proposed TC

Product

A General Engineering TC with focus on Auto sector is proposed to be developed at Bhiwadi based on the presence of large auto focused units and analysis of the industry and market. The product and service offering of the proposed TC therefore has been carefully derived keeping in view the existing gaps to address specific requirements of this sector. Further the shortlisted specialisations and respective courses to be offered by the proposed TC have been done keeping in view the shortage in the availability of required skill sets in the labour force across the industry.

The existing Auto focussed MSME TCs majorly focuses on the small size sheet metal work with negligible focus on the plastic mould work. They don't have the capacity to address the medium size tooling. As a differentiator and keeping the market needs in mind, we have proposed medium size sheet metal work and small size plastic mould work for the proposed TC at Bhiwadi. In contrary to the existing Auto focus MSME TCs, we have also proposed an incubation centre in the proposed TC for the budding entrepreneurs. The centre would encourage final year trainees to start their own ventures by providing necessary support like finance, high end machining, availing benefits of Government schemes etc. for a period of 3 years.

The summary is provided below:

The key offerings of the proposed TC will be auto sector focused like; manufacturing of tools,

training for skill development with respect to various specialisations, consultancy services in Auto sector. Focus areas would include:

- Medium size sheet metal work and low size plastic mould work. (medium size press tool, mid- size plastic mould, pressure die casting etc.)
- Long and short term training programmes in CNC/ CAD/CAM, advance welding, industrial and process automation etc.
- Consultancy services in the field of product and tool design, manufacturing etc. for improved quality and productivity.
- Incubation support to the trainees/budding entrepreneurs for their start-up ventures

Price

As per the study and discussions with GMs of some of the existing TCs, the proposed TC should adopt the cost plus pricing approach for its products and services during its initial years of operation and thus ensuring operating profit for sustainability. Most of the existing MSME TCs follow the cost plus pricing approach only for all of their products and services

As a differentiator from the existing MSME TCs, it is proposed that once the TC will strengthen its brand and credibility in the market it should gradually move towards market-based pricing with defined margin levels (margin based costing). Then, the TC will have to work towards optimisation of its processes and operations to sustain its margins in the competitive environment.

The above mentioned pricing models are suggestive and will depend on the detailed analysis while preparing the Go To Market Plan with the support of the CNM

Promotion

Promotion of TCs products and services is one of the most important components of the Go To Market Plan for a new set-up. Hence, below are some of the suggestive points which might be considered while making the final Go To Market Plan for the proposed Bhiwadi TC.

- Increasing visibility to external audience
 - Encourage and execute early communication and promotion of activities by TC which are relevant to key external audiences including industry, media, technical media etc.
 - Producing a steady, reliable stream of quality outbound communications that highlights;
 - Research innovations and technology evaluations coming from the TC and its partnerships.
 - Special events and conferences hosted or supported by TC.
 - Working with industry partners to identify projects for joint publicity.
 - Develop Facebook/ LinkedIn/ Twitter/ YouTube presence to connect to students.
 - Ensure current marketing message is being maintained with all social media platforms administered by these TC.

Engaging internal stakeholders

- Conduct media and website training on a regular basis for all interested faculty and staff.
- Leverage active partnerships with the industry and community, inviting departmental and staff participation.
- Ensure department faculty and staff are informed of the progress of the TC with respect to each goal.
- Other Activities
 - Website: Develop a website showcasing all highlights of the TC.
 - TC fast facts: Fast fact can be a two-page information sheets describing the highlights of TC. It can be made available online and increase the visibility to external audiences.
 - TC online email newsletters: Preparation and delivery of high-quality email newsletters from TC to industrial units, associations and other partners with the latest research announcements, news and more of engaging and interesting information to these external audiences.
 - High quality print promotions: High quality print promotions coordinated by TC communications, which maintains the Bhiwadi TC as a brand to be utilised in outreach efforts.
 - Industry tie-ups: Partner with Industries and other technical education institutes to increase the visibility of TC. Explore opportunities to participate in publications and other co-branding opportunities with these partners from time to time.
 - Maintain consistent social media presence: Ensuring consistent, exciting messaging is
 posted on active social media platforms including the TCs Facebook page, Twitter account,
 YouTube channel and others. Promote the presence of TC on these platforms to students,
 alumni and supporters while acting as a social media hub for internal departments

Place

Bhiwadi is strategically located between Delhi and Jaipur within the National Capital Region. Further, it has also been identified as an investment region under DMIC and other mega industrial projects are coming up in this region. All these location advantages will be leveraged while preparing the detailed marketing plan to establish the proposed TC as one of the prominent TCs catering to the Auto Sector.

As a part of developing the go to market plan GM would work with the CNM, during the final stages of the construction, to prepare a detailed marketing plan keeping in view the focus areas of the TC. This team, with support from CNM, would be responsible to conduct the suggestive activities as mentioned in the promotion component and lead the marketing initiative for the TC.

In view of the above broad framework the following would be undertaken for marketing of the TC during its inception to start with. It is proposed to keep aside an initial one time marketing budget for completing most of the below mentioned activities through third party vendors:

Phases	Activity	Ownership	Timeline
Preparation of promotional materials	 Designing brochure of TC (through outsourcing) Short video film of TC infrastructure and facilities available (through outsourcing- post completion of the infrastructure/construction) Development of TC website (through outsourcing) 	Marketing team, GM and CNM	Construction and Post construction phase
Pre marketing activities	 Preparing list of industrial association bodies in the Bhiwadi catchment, district and state. Preparing list of industries in consultation with DIC. Shortlisting of perspective players' with respect to product range and process. Design a brief questionnaire. Preparing list of engineering colleges, ITIs, polytechnics, in the catchment area. 	CNM and GM	Construction phase
Targeting the manufacturing units	 Send the brochure along with cover letter and short questionnaire to the shortlisted industries. Seek time from large industries and industry body associations to give presentation on the capability statement of Bhiwadi TC with respect to manufacturing of tools etc. Send representatives to get the filled questionnaire or fill the questionnaire circulated earlier. Analyse the questionnaires received with respect to production, consultancy, training requirements of industries. Meeting the key industrial units identified in the analysis to further understand their needs with respect to tool manufacturing, production support, training of employees etc. Organise as well as participate in industry 	GM, Manager Marketing, CNM and TP	During installation and commissioning of machines for manufacturing

Table 26: Suggestive marketing activities, ownership and timeline

Phases	Activity	Ownership	Timeline
	oriented outreach programmes/ seminars/ workshops/ boot camps etc.		
Targeting OEMS	 OEMs are important because they involve many industries including MSMEs in the manufacturing of a product. The TC will plan for targeting the same through the following; Take appointment and meet the OEMs in the region to understand their specific needs with respect to support required in tool manufacturing and training of employees etc. Presentation on the capability statement of Bhiwadi TC with respect to manufacturing of tools, training etc. Get their vendor details and understand their portfolio of product requirement at various levels Plan to Increase product portfolio to cater to the OEMs and their vendors 	GM, Manager Marketing, CNM and TP	During installation and commissioning
Targeting technical and vocational training institutes and high schools	 Meet the principle/ HoD of the institutes and present on the capability statement of Bhiwadi TC with respect to training infrastructure, faculty, real time learning with on job learning etc. Seeking permission and presenting the same to final and pre final year students Getting permission to display the brochure of TC on the notice board of these institutes. Organise as well as participate in industry oriented outreach programmes/ seminars/ workshops/ boot camps etc. 	Marketing team (GM) and CNM	During installation and commissioning of machines for training

Focus Area for Bhiwadi TC

10. Focus area for Bhiwadi TC

As mentioned in the previous section, NCR region caters to around 60 per cent of the India's passenger car production, 55 per cent of motor cycle production and 25 per cent of tractor production. The auto industry in the Bhiwadi catchment comprises players across the entire industry value chain.

Therefore, based on the data available, presence of large auto focused units, discussions with O/o DC-MSME and major firms in the region and domain experts, a General Engineering TC with focus on auto sector is proposed at Bhiwadi location in the Alwar district of Rajasthan. It is important to note that O/o DC-MSME has multiple TC focussed on the automotive sector across India. Therefore, Bhiwadi TC is planned in such a way that it complements the existing investment and overall improves the capability of automotive focussed MSMEs in India.

The table below presents the existing capacity of MoMSME TRs in the in different processes across small, medium and large size tooling requirement.

Tool Size	Sheet Metal	Plastic	Casting	Forging
Small	 Jamshedpur Aurangabad Ludhiana 	 Jamshedpur Ahmedabad Ludhiana Indore Kolkata 	 Jamshedpur Aurangabad Indore 	 Jalandhar Kolkata
Medium	-	-	-	-
Large	-	-	-	-

Table 27: Capability of existing MSME TCs

As explained in section 5.4, the requirement of sheet metal and plastic mould in the 2 and 4 wheelers together comprise majority (greater than 75%) of the tooling requirement. The sheet metal dies requirement for passenger cars is categorised as small, medium and large sized. As per the discussions with different OEMs, experts and O/o DC-MSME, present commercial tool rooms in India have sufficient capacity to develop small size sheet metal tools. Similar capacity is also available with all the existing MSME TCs who also cater to this segment. However, some critical and intricate tooling in this segment is still imported. There are few commercial and captive TRs catering to mid-size sheet metal tooling. As per industry estimates, around 60% in this segment are imported from countries like Korea, Taiwan and China.

From table 27 above, it is also evident that today MoMSME TCs lack capabilities in medium and large size tooling. Also, capacity is almost non-existent in large size sheet metal tooling in the private TRs. Considering the low volume of the large size tooling market and high level of

investment requirement, it may not be viable to venture into large size tooling as of now. Also, since the volume of new car launches is expected to be low in India, it is not economically viable to produce tooling for large components. However TC may review the market position after a period of 7-10 years. Medium size sheet metal constitutes the highest percentage (among all three sizes - small, medium and large size) of tooling value wise and as mentioned above currently more than half of it is imported. Hence, the proposed Bhiwadi TC should address this gap in the existing market.

Therefore, it is proposed that the new green field TC in the auto sector should focus on mid-size sheet metal tooling. Based on discussion with the experts and industry players it is further proposed that TC should focus more on bigger size tooling in mid-size sheet metal. Similarly, plastic moulds which includes components like bumper, mirrors covers, dashboard, inner panels etc. is also another major area of tooling in 4 wheelers. There are about 30,000 components in a car in which sheet metal and plastic parts comprise the majority of components. Some of the key components have been highlighted in the following figure.

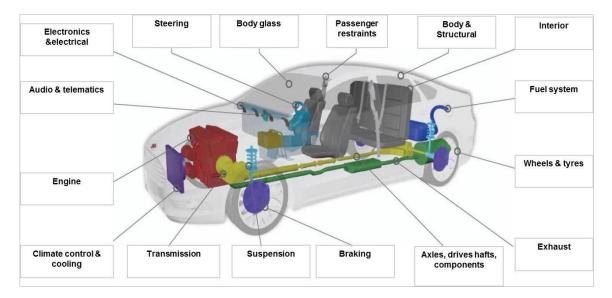


Figure 31: Key components in 4 wheelers

Further, as explained in section 5.4, plastic moulds (mainly small size) and pressure die casting together comprise about 3/4th of the tooling requirement and hence will be the focus areas for two wheeler tooling. There are about 5,000 parts in a motorbike. Plastic and pressure die casting comprise majority of parts. Some of the key components have been highlighted in the following figure.

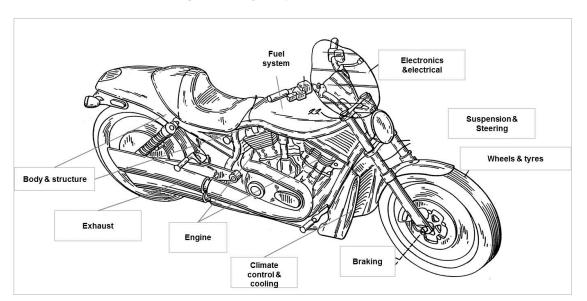


Figure 32: Key components of 2 wheelers

The importance of sheet metal and plastic mould tooling requirements in auto sectors has also been validated further during various discussion carried out by our experts and team with OEMs, Tier 1 players, MSMEs, industry association in this region. Some of the key discussion points with these players have been highlighted in the annexure 18.9.

Since the Bhiwadi area has concentration of 2 and 4 wheeler units, development of an auto TC in Bhiwadi focussing on medium size sheet metal work and small size plastic mould work has been narrowed down³⁸. Suggestive list of automotive parts which can be manufactured in the mentioned areas of focus has been given in table 28. The proposed TC should enhance its capacity in the areas mentioned and not only support the MSMEs in catchment area but MSMEs outside the catchment area as well.

³⁸ Specification for small, medium and large tool size is provided in Annexure 18.9

Bhiwadi TC will focus on technology & training support

- Auto component design, development and engineering solutions for manufacturing
- Expertise in Sheet metal tooling for Auto sector
 - o Support in Tool and die making to commercial tool rooms/ MSMEs
 - Provide training/ Skilled manpower for tool and die making, metal cutting and other technical areas
- ► Testing, calibration, metrology & inspection support
- Reverse Engineering & Import substitution
- State of art training facility to cater to design & manufacturing requirements of tool rooms and other component manufacturers
 - o CNC/CAD/ CAM etc.
 - o Robotics & Industrial Automation
- Collaboration with Commercial tool rooms (CTRs) and MSMEs

10.1 Plant and machinery for the TC

In automotive industry, original equipment manufacturers (OEMs) make the final product by assembling the components supplied by tier 1 suppliers. Tier 1 supplier's in-turn source their products from Tier 2 and Tier 3 supplier (some of these could be MSME suppliers). These MSMEs require machine tools in order to produce auto components where our TC can support them by providing tools.

These tooling involve large scale injection moulds, casting dies, forging dies and stamping dies. These can be classified in 4 broad categories:

- Press Tool It is a special build for cutting and non-cutting operations on sheet metal to produce particular components like door panels, inner liner, clutch parts, brake parts etc. These tools are in the form of dies and punches which can be used in stamping, forming, blanking, piercing and other processes to produce these auto parts. In order to produce these press tools, machines like milling, lathe, drilling, die spotting press and wire EDM machines play a critical role.
- Moulds Auto components like front and rear bumper, engine cover, head light and rear light, and door trimmings are made of plastic. These components are produced using injection moulding process which requires moulds for each part. Production of these moulds requires milling, lathe, drilling, die spotting press, wire EDM, gun drilling, and surface grinding machines.
- Die Casting Dies Die casting process offers an economical way of producing large quantities of complex, high tolerance parts in metal alloy. Engine block, power train casing, Gear box casing, pistons, wheel rim, and oil pump are the few examples. Milling, lathe, drilling, dies spotting press, wire EDM, gun Drilling, surface grinding machines, and cylindrical grinding machines are used to produce these dies.
- Jigs, Fixtures and Gauge -Jigs and fixtures are devices that locate and hold the work piece. These devices also guide and control one or more cutting or punching tools. Gauges are generally used for measuring and checking of squareness,

Figure 34: Mould

Figure 35: Die casting die

Figure 36: Jig & Fixture

perpendicularity, dimensions and testing finished surfaces. Milling, lathe, press, drilling and grinding machines are mainly used for production of these devices.

Based on the study and discussions carried out, some suggestive automotive parts which can be manufactured at Bhiwadi TC are given below:

SN	Raw material	Automotive parts	Processes required for manufacturing	Tool required	Machines required for making tool
			the part		
1	Sheet metal	Clutch Parts, Brake Parts, Gaskets, Seating System, Inner Liner, Bottom Carpet, Wheel Parts	Blanking, Piercing, Forming (Bending), Drawing, Stamping	Press Tools- punch and Dies	Milling, Lathe, Drilling, Die Spotting Press, Hydraulic Press, Mechanical Press wire EDM,
2	Plastic	Radiator Grill, Head Light, Engine Cover, Front and Rear bumper, Rear Lights, Central Console, Mirror Housing, Door Trimmings etc.	Injection Moulding	Moulds	Milling, Lathe, Drilling, Die/mould Spotting Press, Hydraulic Press, Mechanical Press EDM, wire EDM, Gun Drilling, Surface Grinding, Injection Moulding Machine
3	Metal Alloys	Engine block, Powertrain Casing, Gear Box Casing, Pistons, Wheel Rim, Steering Wheel, Oil Pump etc.	Pressure Die Casting	Dies	Milling, Lathe, Drilling, Die Spotting Press, wire EDM, Gun Drilling, Surface Grinding, Cylindrical Grinding, Pressure die casting machine
4	Plates and Bars	Welding Fixtures, Special Fixtures. Gauges, Relation Gauge, Templates	-	Jigs, Fixture, Gauge	Milling, Lathe, Drilling, wire EDM, Grinding

Table 28: Requirement of machines for manufacturing of different automotive parts

10.1.1 Budgetary cost of plant and machinery

The machines for respective functions like production, incubation and training have been proposed based on the focus areas identified for Bhiwadi TC. The total budgetary cost (landing cost) of machines required for the same has been estimated to be around INR 7,944 lakhs, breakup off which is as follows:

Table 29: Budgetary cost of machines

SN	Activity	Budgetary cost of machines (in Lakhs)
1	Production machinery and equipment	4,908.22
2	Incubation centre machines and equipment	287.7
3	Training machines and equipment	2,747.85
	Total	7,943.77

The list of machines required for these activities along with respective budgetary costs have been given in the subsequent sections.

10.2 Production

On the basis of focus sector for the proposed TC, following are the machines identified for production/ manufacturing activities at the proposed TC. The list will be further validated by technology partner for finalisation and to initiate procurement. The budgetary cost (landed cost) of these machines is approximately estimated at around INR 4,908 lakhs. The team has discussed with various vendors and taken quotes for machines to arrive on the estimated budgetary cost (the same has been attached as annexure 18.6). The growing concerns related to climate change, energy security, scarcity of natural resources and increasing environmental regulations is putting more emphasis on sustainable production activities in manufacturing process. Due care therefore has been taken during the identification of machines for production systems and associated services, processes, plants and equipment in the TC. This will make the TC environmental friendly and energy efficient and would be better equipped to manufacture more products with less material, energy and waste.

SN	Machine	Suggestive Specs	Similar machine in existing TC	No.	Budgeted Cost (INR Lakhs)	Total Cost (INR Lakhs)	
1.	CNC Milling-5axis	3m*2m*1.5m	NA	2	750	1500	
2.	CNC Milling-3axis	2.5m*1.5m*1.5m	NA	1	300	300	
3.	Die spotting press	200 mt	NA	1	150	150	
4.	Hydraulic press	1000 tonne	NA	1	100	100	
5.	Mechanical press	100 tonne	NA	1	40	40	
6.	Wire EDM	800*800*500 mm	Jamshedpur, Aurangabad	1	300	300	
7.	EDM	1000*1000 mm	Jamshedpur, Aurangabad	1	150	150	
8.	Injection Moulding machine	800 tonne	NA	1	120	120	
9.	CNC Lathe	300*600	All TCs	1	80	80	
10.	Gun drilling machine	20*800mm	NA	1	12	12	
11.	Radial drill machine	63mm	All TCs	1	10	10	
12.	Surface Grinding	2.5m*1.5m	NA	1	60	60	
13.	Surface Grinding	2m*1m	Ahmedabad, Aurangabad	1	40	40	
14.	Cyl Grinding	200mm*750mm	All TCs	1	40	40	

Table 30: Proposed list of machines for production/ manufacturing activities

SN	Machine	Suggestive Specs	Similar machine in existing TC	No.	Budgeted Cost (INR Lakhs)	Total Cost (INR Lakhs)
15.	Vacuum Heat treatment plant	300mm*1000mm	Bhubaneswa r & Jamshedpur	1	200	200
16.	Assembly Benches & Fixtures	-	All TCs	1	10	10
17.	Auxiliary Equipment (Drill m/c, pedestrial grinder, trollies etc.)	-	All TCs	1	20	20
18.	EoT & Jib Crane	-	All TCs	1	50	50
19.	Compressor (approx. 250 CFM)	-	All TCs	2	10	20
20.	CMM (Coordinate Measuring Machine)	3m*2m*1.5m	All TCs	1	500	500
21.	Height Master/Gauge	-	All TCs	1	10	10
22.	Surface Finish tester	-	All TCs	1	20	20
23.	Other Metrology lab equip	-	All TCs	1	70	70
24.	CAD Software like CATIA, UG etc	-	All TCs	25	2	50
25.	Engg. Analysis software like ANSYS, mouldflow, autoform, PAMstamp etc.	-	All TCs	1	100	100
26.	Additive Manufacturing/3D printing/RPT	-	Ludhiana & Ahmedabad	1	700	700
27.	Drafting/Printing	-	All TCs	1	5	5
28.	Workstations	-	All TCs	25	0.7	17.5
29.	Misc., unforeseen			1	233.725	233.725

SN	Machine	Suggestive Specs	Similar machine in existing TC	No.	Budgeted Cost (INR Lakhs)	Total Cost (INR Lakhs)
	& Contingency					
	Total				4083.42 5	4908.225

*NA: Not Available

10.3 Incubation centre

Promoting emerging technological and knowledge-based innovative ventures that seek to nurture ideas from professionals is important for development MSMEs. Such entrepreneurial ideas need to be fostered and developed in a supportive environment before they become financially sustainable or attractive enough for venture capital. Hence need arises for incubation centres to promote budding individual innovators and to assist them to become technology based entrepreneurs. Typical areas of Incubation support include

- Idea conceptualisation & business planning Technology commercialization,
- Access to infrastructure networking, office space
- Access to finance bank loans, loan funds, guarantee programs, investors
- Access to technology access to machines, designing support
- Access to market Introduction to strategic partners
- Facilitation of approvals regulatory compliances, clearances

The incubation centre may also provide support to promote networking and forging of linkages with other constituents of the innovation chain for commercialization of their developments.

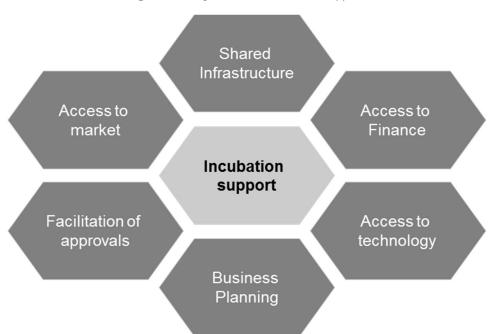


Figure 37: Key areas of incubation support

Typically the incubation support initiatives provide support to new businesses for an initial period of 2-4 years.

Business incubators differ from traditional research and technology parks in terms of scale and assistance. Research and technology parks are typically large-scale projects that house corporates, government companies or university labs to very small companies. Typically research and

technology parks do not provide business assistance services, which are the hallmark of business incubators. However, research and technology parks may house incubation programs.

Several initiatives in this direction of incubation have been taken by various departments of Central Government. Some of them include

 Incubators scheme for MSMEs- A component of National Manufacturing Competitiveness programme to improve competitiveness of MSMEs (MoMSME)

The term 'innovation' covers a very wide domain. According to MoMSME, innovation signifies any activity and new/ ingenious procedure or product that is likely to be of use to society and marketable in the long run. The scheme seeks to provide small dose of assistance, to students/ ex-students of science and technology and entrepreneurs to try out their innovative ideas (new processes/ products) at the laboratory or workshop stage and beyond (to the extent possible) with an objective to carry the idea from concept stage to 'know-how' stage and then to 'do how' stage.

Technology Business Incubator (TBI), Department of Science & technology, (MoST)

TBI is a flagship programme of National Science and Technology Entrepreneurship Development Board (NSTEDB) and focuses on incubation of potential ideas and innovations through a well-defined venture/ enterprise creation process and by effectively utilizing the requisite expertise, facilities and other infrastructure available within the host institution and the adjoining region. The incubation period is expected to be 2-3 years. Key areas of assistance in the TBI scheme include:

- Market survey/ marketing,
- Business planning and training,
- Organising management/ technical assistance,
- Obtaining statutory approvals,
- Information dissemination on product ideas/technologies,
- Syndicating finances,
- Arranging legal and IPR services,
- Provision of work space, shared service facilities

The proposed MSME technology centre at Bhiwadi will also house incubation facilities to promote new entrepreneurs

10.3.1 Incubation centre at Bhiwadi TC

The proposed TC will provide incubation support to trainees for their start-up ventures. The centre would encourage final year trainees to start their own ventures by providing necessary support like high end machining, access to finance, availing benefits of Government schemes etc. for a period of 3 years. The TC can extend its facilities for nominal fee during this period to these start-up ventures and help them to specialise in their core activities. The incubation centre will not only provide support in its focus areas but also in other areas like non-auto focused sectors and non-precision works. The Incubation centre is proposed to perform in the following manner:

- The centre would encourage final year trainees in the long term programmes to start their own venture. Final semester trainees would be required to submit a business plan in an Idea competition to be undertaken by TC.
- Business plan of best 5%-10% students from each long-term course will be selected.
- Support would be provided to these students for their respective start-up venture from TC for a period of up to 3 years.
- These students can avail support with respect to product development, tool design, job work, automation solutions from the Incubation centre for setting up of their start-up ventures.
- The student would be allowed to use the facility on discounted rates (to be decided by the GC). During this support period TC can also extend its high end machining facilities like CNC 5-axis milling machine etc. for different job works of the start-up venture.
- > The TC will also assign a mentor for necessary guidance during this support period.
- The TC would help the new venture to avail benefits under various Government schemes as applicable.
- The TC would also facilitate in mobilisation of finance/ seed money from venture capitalists or others in the market as well as in getting required statutory clearances.
- The TC with assistance from the TP, will develop a monitoring framework for the trainees who will opt for the incubation centre facilities.

Incubation centre can take support from TC more than mentoring whereas order sharing can happen on need basis. Moreover, CNM will also support members of incubation centre on need basis in order to help them expanding the business as well as in collaborating with industry and academia.

While doing the study, it is also found that National Small Industries Corporation has taken initiatives to establish training-cum-incubation centre to promote and foster the growth of MSMEs in the country. Through franchisee arrangements with private partners it has set up such centres at various locations across the country under public private partnership mode. Around 80 such training-cum-incubation centres have already been set up in the country. Key services rendered by these centres are as follows:

- Opportunity to first generation entrepreneurs to acquire skill for enterprise building and provide incubation support
- Exposure in various areas of business operations such as business skills development, identification of appropriate technology, hands on experience on working projects, project / product selection, opportunity guidance including commercial aspects of business
- Display of low cost project technologies required for setting up new small business enterprises in working condition

During the implementation phase, it is proposed that discussions with institutes like National Small Industries Corporation shall be undertaken to further explore areas of collaboration and improvement for the proposed incubation centre.

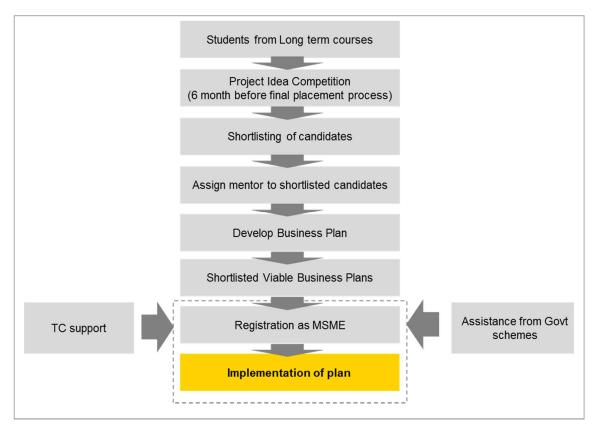


Figure 38: Process for Selection of Projects for Incubation at the TC

Following is the list of machines identified for the incubation centre of the new TC at Bhiwadi. The budgetary cost (landing cost) of these machines is approximately estimated at INR 287.7 lakhs.

SN	Machine	Nos.	Budgeted cost (INR lakhs)	Total (INR lakhs)	
1	Mech. Press	2	1	2	
2	Hyd. Press	1	4	4	

Table 31: Proposed list of machines for incubation centre

SN	Machine	Nos.	Budgeted cost (INR lakhs)	Total (INR lakhs)
3	Heat Treatment Furnace	1	10	10
4	Hand Injection Moulding M/c	2	2	4
5	Injection Moulding M/c	1	30	30
6	CNC Milling 5 axis (minimum specifications)	1	100	100
7	CNC Turn Mill	1	50	50
8	CNC-EDM+WEDM	2	25	50
9	Surface Grinding	1	4	4
10	Cyl-grinding	1	10	10
11	Misc. Machines and Equip (like drill, benches etc.)	1	10	10
12	Contingency @5%			13.7
L	Total	14	246	287.7

It is recommended that no operators will be appointed in the incubation centre and incubators will operate machines with the support of trainees. In addition to the above dedicated machines, following facilities will also be available to the Incubation centre on need basis:

- Design and Consulting department facility (computers, hardware, software etc.)
- Reserve capacity within the training centre for fulfilment of orders

10.4 Training

The TC at Bhiwadi will provide professional training in various courses with focus on auto and general engineering. The TC will be able to produce highly skilled technical workforce, with greater career prospects in the automotive service and general engineering industry. The duration of courses will be both short and long term, ranging from 1 month to 36 months in various specialisations like; tool making and metal cutting, maintenance, CNC manufacturing, CAD/ CAM, advance Welding, Car/bike service training, Information Technology (part time courses), industrial and process automation etc. The course curriculum for the short term and long term courses of the TC would be reviewed and updated every 3 years based on industry needs and trends. The batch size, number of batches per annum and respective fees has been decided on the basis of capacity of existing TCs and NCVT norms. A soft skill lab having for training in English language and communication facilities will be established in the TC to cater to the various courses. Soft skill module will be an integral part of all the medium to short term courses. The TC will start training activity from the first year of its operation across all specialisations. The total capacity intake is expected to reach approximately 7,900 trainees over 5 years. The detail of courses in various specialisations is given below:

SN	Specialisation	Course name	Duration	Batch size	No. of batches	Annual	
	opoolanoation		(months)	0120	/ year	intake	
1	Tool Making	Diploma in Tool & Die making	48	120	1	120	
	and Metal	Machinist	12	60	4	240	
	Cutting	Post Diploma in Tool Design	12	30	2	60	
		Post Diploma in Tool	12	30	2	60	
		Manufacturing	12	50	2	00	
		Advance Diploma in CNC-	6	30	4	120	
		Programming & Operation	Ũ	00		0	
		Master of CAD/CAM/CNC	4	30	3	90	
2	Maintenance	Machine Maintenance-	3	20	4	80	
		mechanical	Ū.	1			
		Maintenance Technician	3	20	4	80	
		Machine Maintenance-	6	20	2	40	
		mechanical (Part Time)			_		
		Maintenance Technician (Part Time)	6	20	2	40	

Table 32: Details of specialisation, courses, duration and capacity intake

SN	Specialisation	Course name	Duration (months)	Batch size	No. of batches / year	Annual intake
3	CNC Manufacturing	CNC lathe programming and operation (Full Time)	2	30	12	360
	, CAD/ CAM	CNC lathe programming and operation (Part Time)	4	30	12	360
		CNC Milling Prog and Operation (Full Time)	2	30	12	360
		CNC Milling Prog and Operation (Part Time)	4	30	12	360
		CAD/CAM/CNC ENGINEER (Full Time)	2	30	12	360
		CAD/CAM/CNC ENGINEER (Part Time)	4	30	6	180
		CAD Modelling with different softwares (Full Time)	1	30	24	720
		CAD Modelling with different softwares (Part Time)	2	30	24	720
		Computer Integrated Manufacturing (CIM)	1	30	24	720
4	Advance Welding	Basic Arc and Gas welding (Full Time)	3	20	4	80
		Basic Arc and Gas welding (Part Time)	6	20	4	80
		TIG welding (Full Time)	1.5	10	4	40
		TIG welding (Part Time)	3	10	8	80
		MiG welding (Full Time)	1.5	10	8	80
		MiG welding (Part Time)	3	10	8	80
		Spot Welding (Full Time)	1.5	10	2	20
		Spot Welding (Part Time)	3	10	4	40
		Stainless Steel & Aluminium welding (Full Time)	1.5	10	2	20
		Stainless Steel & Aluminium welding (Part Time)	3	10	4	40
		Welding-NCVT	12	20	1	20

SN	Specialisation	Course name	Duration (months)	Batch size	No. of batches / year	Annual intake
5	Car/bike service	Car Servicing electro- mechanical	3	30	4	120
	training	Basic Auto electronics	3	30	4	120
		Servicing of Auto Air Conditioning	3	30	4	120
		Bike Servicing electro- mechanical	3	30	4	120
		Car Servicing electro- mechanical (Part Time)	6	30	2	60
		Basic Auto electronics (Part Time)	6	30	2	60
		Servicing of Auto Air Conditioning (Part Time)	6	30	2	60
		Bike Servicing electro- mechanical (Part Time)	6	30	2	60
6	Information Technology	Basic computer and Hardware (Part Time - 4 hrs)	2	20	20	400
	(Part Time Courses)	Advanced Hardware & Networking (Part Time - 4 hrs)	4	20	10	200
7	Industrial and	Industrial Hydraulics	1	20	12	240
	process	Industrial pneumatics	1	20	12	240
	Automation	PLC Programming	1	20	12	240
		Automation Technician	4	20	3	60
		Industrial automation design	4	20	3	60
		Diploma in Mechatronics	36	60	1	60
		Total				7,870

		Course name	Fee/	Capacity intake	Minimum	Cla	assrooms	Lab	oratories	Wo	rkshops
SN	Specialisation		student (INR)		Qualification	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)
		Diploma in Tool & Die making	80,000	120	10th Pass and ITI for lateral	1	75	3	162	1	756
		Machinist	30,000	240	10th Appeared/	1	75	2	108		
	Tool Making and Metal Cutting	Post Diploma in Tool Design	50,000	60	Dip/Degree			1	54		
1		Post Diploma in Tool Manufacturing	50,000	60	Dip/Degree			1	54		
		Advance Diploma in CNC-Programming & Operation	25,000	120	Dip/Deg			1	54		
		Master of CAD/CAM/CNC	20,000	90	Degree			1	54		
		Machine Maintenance- mechanical	15,000	80	Diploma			1	54		
2	Maintenance	Maintenance Technician	10,000	80	ITI- FIT/TUR/Mach			1	54		
	·	Machine Maintenance- mechanical (Part Time)	18,000	40	Diploma						

Table 33: Details of courses

			Fee/	Capacity	Minimum	Cla	issrooms	Lat	ooratories	Wo	rkshops
SN	Specialisation	Course name	student (INR)	intake	intake Qualification	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)
		Maintenance Technician (Part Time)	12,000	40	ITI- FIT/TUR/Mach						
		CNC lathe									
		programming and operation (Full Time)	9,000	360	ITI	1	75	2	108	1	756
		CNC lathe programming and operation (Part Time)	10,000	360	Pursuing ITI/Industrial workers						
	CNC	CNC Milling Prog and Operation (Full Time)	10,000	360	ITI			2	108		
3	Manufacturing, CAD/ CAM	CNC Milling Prog and Operation (Part Time)	10,000	360	Pursuing ITI/Industrial workers						
		CAD/CAM/CNC ENGINEER (Full Time)	10,000	360	DIP/Deg			2	108		
		CAD/CAM/CNC ENGINEER (Part Time)	10,000	180	Pursuing DIP/Degree/Wor king						
		CAD Modelling with different softwares	6,000	720	DIP/Deg			2	108		

			Fee/	Capacity		Cla	Classrooms		Laboratories		Workshops	
SN	Specialisation	Course name	student (INR)	intake	Qualification	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	
		(Full Time)										
		CAD Modelling with										
		different softwares	7,000	720	DIP/Deg							
		(Part Time)										
		Computer Integrated	7,000	720	Deg							
		Manufacturing (CIM)	7,000	720	Deg							
		Basic Arc and Gas	12,000	80	10th	1	75			1	756	
		welding (Full Time)										
					Pursuing							
		Basic Arc and Gas	10,000	80	ITI/Industrial							
		welding (Part Time)			workers							
		TIG welding (Full Time)	6,000	40	ITI/Basic course							
4	Advance				Pursuing							
	Welding		6,000	80	ITI/Industrial							
		TIG welding (Part Time)			workers							
		MiG welding (Full Time)	6,000	80	ITI/Basic course							
					Pursuing							
		MiG welding (Part	6,000	80	ITI/Industrial							
		Time)			workers							
		Spot Welding (Full	8,000	20	ITI/Basic course							

			Fee/	Capacity	Minimum	Classrooms		Laboratories		Workshops	
SN	Specialisation	Course name	student (INR)	intake	Qualification	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)
		Time)									
		Spot Welding (Part Time)	8,000	40	Pursuing ITI/Industrial workers						
		Stainless Steel & Aluminium welding (Full Time)	8,000	20	ITI/Basic course						
		Stainless Steel & Aluminium welding (Part Time)	8,000	40	Pursuing ITI/Industrial workers						
		Welding-NCVT	24,000	20	10th						
		Car Servicing electro- mechanical	10,000	120	ITI	1	75	2	108		
		Basic Auto electronics	10,000	120	ITI						
5	Car/ bike service training	Servicing of Auto Air Conditioning	10,000	120	ITI						
	ti ali lii iy	Bike Servicing electro- mechanical	10,000	120	10th						
		Car Servicing electro- mechanical (Part Time)	12,000	60	ITI						

			Fee/	Capacity	Minimum	Cla	Classrooms		Laboratories		Workshops	
SN	Specialisation	Course name	student (INR)	intake	Qualification	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	
		Basic Auto electronics (Part Time)	12,000	60	ITI							
		Servicing of Auto Air Conditioning (Part Time)	12,000	60	ITI							
		Bike Servicing electro- mechanical (Part Time)	12,000	60	10th /ITI							
6	Information Technology	Basic computer and Hardware (Part Time - 4 hrs)	8,000	400	10th/ITI/12th	1	75	2	108			
	(Part Time Courses)	Advanced Hardware & Networking (Part Time - 4 hrs)	12,000	200	12th/DIP/Degre e							
		Industrial Hydraulics	6,000	240	ITI/Dip/Deg	1	75	1	54			
	Industrial and	Industrial pneumatics	6,000	240	ITI/Dip/Deg			1	54			
7	process	PLC Programming	6,000	240	Dip/Deg			2	108			
,	Automation	Automation Technician	12,000	60	ITI			1	54			
	, wromation	Industrial automation design	15,000	60	Dip/Deg							

CN	Createliestion		Fee/	Capacity	Minimum	Cla	issrooms	Lat	ooratories	Wo	rkshops
SN	Specialisation	Course name	student (INR)	intake	Qualification	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)	Nos.	Area (Sq. mt.)
		Diploma in Mechatronics	1,20,00 0	60	10th	1	75	2	108		
		Total		7,870		8	600	30	1,620	3	2,268

The TC will have adequate installed capacity of infrastructure like machines, software, computers etc. required to provide training to the proposed student capacity under various specialisations. The estimated cost of these machines is approximately INR 2,748 lakhs. The following table provides the details of the same;

SN	Training Machines	Nos.	Budgeted Cost	Total
			(INR lakhs)	(INR lakhs)
1.	Con-Milling-V-H-U	10	12	120
2.	Con-Lathe	10	4	40
3.	Surface Grinding	5	4	20
4.	Cyl-grinding	3	10	30
5.	Pedestal Grinding	3	1	3
6.	Drills	5	1	5
7.	Tool & Cutter Grinder	1	20	20
8.	Work benches	30	0.4	12
9.	CNC-Milling	15	30	450
10.	CNC -Lathe	15	20	300
11.	CNC-Simulation Modules	30	2.5	75
12.	CNC- Mill+Turn-Table Top	2	15	30
13.	CIM Lab With Roba	2	50	100
14.	Computers+ (for CAD/CAM)	600	0.5	300
15.	Cad/Cam software Licence	300	0.3	90
16.	CMM+ metrology lab equip	1	50	50
17.	Welding workshop for 20	1	80	80
18.	Maintenance lab-Mech	1	50	50
19.	Auto Electronics servicing lab	1	150	150
20.	Tech aids (Audio Visual)	30	1	30
21.	Tech aids (Smart Board)	8	1	8
22.	Sub total			1,963
23.	Basic automation Lab for 20	1	200	200
24.	Advance Automation lab for 20	1	250	250
25.	Furniture for labs	30	0.1	90
26.	Classroom Furniture @ 60 seats	8 ³⁹	0.05	24
27.	Sub total			564
28.	Transformer @2000KVA			20

³⁹ One of the Tech aids (Smart Board) will be used as communication/ language lab on need basis

SN	Training Machines	Nos.	Budgeted Cost (INR lakhs)	Total (INR lakhs)
29.	DG Set @ 500KVA			40
30.	UPS (for training & production)			25
31.	Sub total			90
32.	Total			2,617
33.	Misc, Unforeseen & Contingency			130.85
	Grand Total			2747.85

10.5 Consultancy

MSMEs are plagued with bottlenecks and inefficiencies that compromise their competitiveness and presence in the market. Handholding is required to enable MSMEs to develop competencies in the areas of product & process development, operation improvement, streamlining and standardisation of processes through adoption of international norms, new technologies and capacity enhancement. Quality and technical relevance of products need to be maintained by supporting product development, component manufacturing, precision engineering, process automation and adherence to quality norms.

Therefore, the Bhiwadi TC would have a dedicated professional wing to assist MSMEs by providing consultancy services in the field of product and tool design, manufacturing and innovations for improved quality and productivity. The support of TP will be taken wherever required. Consultancy will be provided in the following areas:

- Product development and engineering solutions
- > Project consultancy in setting up of private TRs, training centre etc.
- Design support
- Quality systems support
- Productivity improvement through cluster approach
- Maintenance support to institutes like ITIs, polytechnics and specialised machines of MSMEs
- Curriculum development, Course material development and lesson plan to ITIs, Polytechnic, Community Colleges and other institutes
- > Trainers training to ITI, Polytechnic and Community Colleges
- Lean manufacturing
- Designing of Automation solutions
- Seminars/Workshops for MSMEs, Colleges
- Support to Community College of central university
- Business incubation services
- Other consulting projects

Since providing consulting services requires the expertise in specific domain, the TC would hire the required resources to increase the in-house capability. Illustrative phasing of the areas/domains where the TC can provide consulting services has been suggested below. This has been designed keeping in mind the resource planning and future revenue projections as well.

The designing and consulting department will be equipped with high-end workstations, CAD/ CAM software, analysis software and 3D printing. The design and consulting department is recommended to have 7 experts. The consulting team will also be supported by the production and training departments on need basis. In addition to the above, 30 trainees of final semester tool design course will also work with design department in shifts on daily basis. It is also proposed to

have tie-ups/ collaborations with other MSME TCs in specialised areas of project consultancy as and when needed. The table below represents the projected revenue estimates for 10 years, keeping in mind the impetus on the consulting services for the proposed TC. The revenue estimation has been done using the average machine hour rate.

					Sugo	gestive Reve	nue (in INR	Lakhs)			
SN	Consulting Stream	Year1	Year 2 (17-18)	Year 3 (18-19)	Year 4 (19-20)	Year 5 (growth at 50%)	Year 6 (growth at 40%)	Year 7 (growth at 40%)	Year 8 (growth at 40%)	Year 9 (growth at 40%)	Year 10 (growth at 40%)
1.	Design Support* (incl. Product Design)	0	48.48*	77.56	96.96	116.35	135.74	149.31	164.25	180.67	198.74
2.	Engineering Solutions	0	6	7.8	10.14	15.21	21.29	29.81	41.73	58.43	81.80
3.	Quality System Support	0	0	12	18	27	37.80	52.92	74.08	103.72	145.21
4.	Project Consultancy (curriculum develop, community colleges, trainers etc.)	0	0	12	36	54	75.60	105.84	148.17	207.44	290.42
5.	Productivity Club	0	0	3	4.5	6.75	9.45	13.23	18.52	25.93	36.30
6.	Other Consulting assignments	0	10	15	22.5	33.75	47.25	66.15	92.61	129.65	181.51
Total			64.48	127.36	188.10	253.06	327.13	417.27	539.38	705.86	934.00

Table 35: Areas of consulting and estimated revenue

*The suggestive revenue from design support during 2017-18 has been estimated on the basis of usage of CAD Software like CATIA, UG etc. The TC is provisioned to have 25 numbers of such software packages which with an average estimated rate/hour of INR 400. So with installed capacity @ 80%, the revenue from this stream during one shift of operation is estimated to be around 25*8*80%*400 = INR 64,000. Assuming 25% capacity utilisation for 300 days during 2nd year (2017-18), the total estimated revenue from CAD Software like CATIA, UG packages is INR 48 lakhs. Similarly, revenue assumptions from other engineering analysis software like ANSYS, mouldflow, autoform, PAMstamp etc. has been estimated to be around INR 48,000. Hence, the total estimated revenue from design support is around INR 48.48 lakhs for year 2017-18.

Table 36: Proposed areas of consulting

Consulting Stream	Focus Area (Recommended)
Design Support (incl. Product Design)	 Tool design in the field of sheet metal, press tool and plastic moulds. Support MSMEs in designing products to be supplied to OEMs. This will require 3D modelling and may include reverse engineering etc.
Engineering Solutions	Designing the machining processes involving jigs and fixtures design, cutting tool selection, machine selection, cycle time and tack time selection and achieving the final shape and quality
Quality System Support	 Supporting MSMEs in establishing quality systems, quality improvement and acquiring necessary certifications
Project Consultancy (curriculum develop, community colleges, trainers etc.)	 Supporting training institutes in curriculum develop, community colleges, trainers etc. This may also involve setting up of Tool Rooms and vocational training centres on turnkey basis for various companies under CSR initiatives and for Government agencies like Rajasthan Skill and Livelihood Development Corporation etc.
Productivity Club	 To handhold MSMEs in improving productivity on a long term basis (1-3 years) on a membership basis

Based on the focus areas recommended above, revenue estimation has been done for the identified consulting streams. These estimations are purely based on the expert judgement, prevailing market rates and discussions with the existing TRs.

Table 37: Estimated revenue from consulting	Table 37:	Estimated	revenue	from	consulting
---	-----------	-----------	---------	------	------------

Consulting Stream	Approximated Revenue Estimation
Design Support (incl. Product Design)	 Revenue estimation from CAD Software like CATIA, UG etc 25 Nos. and hourly rate of Rs400. This is initially estimated to run in 1 shift (8 hrs.) at 25% capacity. The installed capacity assumed to be 80% running for 300 days a year. Therefore the calculation would be, 25%*[(25*400*8*300)*80%] = INR 48,00,000 per year Revenue from other Engg. Analysis software like ANSYS, mouldflow, autoform, PAMstamp etc. estimated to be INR 48,000
Engineering Solutions	Rate of INR 250/hr with an estimation of minimum requirement 100 hours per product. We have estimated initially at least 2 products per

Consulting Stream	Approximated Revenue Estimation
	month. Therefore, 2*250*100 = INR 50,000/month
	(50,000*12=6,00,000/year)
Quality System Support	Estimated rate of INR 50,000 per unit. We have estimated serving atleast 2 units a month initially. Therefore, 2*50,000*12 = INR 12,00,000/year
Project Consultancy	Revenues from these assignments vary significantly depending upon the
(curriculum develop,	nature of the assignment. We have estimated a range of INR 1-4 lacs per
community colleges,	assignment with 5-6 assignment per year
trainers etc.)	
Productivity Club	To start with, fee of INR 10,000 per from 30 units per year. Therefore, 30*10,000 = INR 3,00,000

10.6 Proposed support system to enable private TRs tap the market

A collaborative approach with private TRs can help to augment capacity to support MSME.

- Productivity and Quality club: To form a productivity and Quality Club where engineering units in a cluster under MSME may join the club on a reasonable annual fee. The value to the MSMEs would be as follows; MSME TC needs to earmark one expert (with support from TP if required) for the cluster for a period of 12 months with minimum 12 assured visits. The expert would mentor the MSME units individually towards improvement of their system and process to increase the productivity of the unit and quality of its product. These members may also enjoy preferential treatment in other services of the Tool Room e.g. designing and testing, CAD/ CAM etc. The club will facilitate for;
 - Partnerships and collaborations:
 - Develop better partnerships with corporations located in the state and in the catchment.
 - Collaborations with academic and applied research institutes to commercialise new technology/ innovations.
 - Facility Sharing: Sharing the Tool Room facility like high end design, analysis, intricate machining etc.
 - New Market: Jointly exploring potential new markets/ programs and execution the same.
 - Innovation: Promote emerging technological and knowledge-based innovative through seminars and clinics.
- Partnering with small tool rooms and MSMEs to make them competitive: The objective of the same is to carry out activities with potential to develop competitive advantage over time. Rather than two or more Tool Rooms in the catchment producing similar kind of products, a group of Tool Rooms can specialise in selected jobs which would further improve the focus on factors such as quality, costs and time.

Case Study – Consortium with MSMEs - CTTC Bhubaneswar

In 2013, CTTC Bhubaneswar has formed a consortium with 15 MSMEs from different industries in Odisha.

Objective

To obtain jobs/ work orders from customers for the consortium. These jobs, once received will be executed by different members of the consortium according to their capabilities and capacity. The

majority of the work will be performed by the consortium members. In the initial period, CTTC will support the MSMEs to undertake final machining and inspection for the products. Over the period, as MSMEs equip themselves and develop in-house capabilities to independently execute the jobs, CTTC's support will reduce. Further, the number of MSMEs in the consortium is expected to increase, which would in turn strengthen the existing consortium and its capability to pitch for more specialised jobs.

CTTC has jointly pitched for jobs for consortium with its clients like

- Ordnance factory, Balangir
- HAL Koraput

Key Benefits

- As part of the consortium, the MSMEs can pitch for bigger and long term jobs and plan their investments in a better way. This will in turn encourage formation of new MSMEs and strengthening of existing MSMEs in Odisha
- Currently for some of the jobs, CTTC has to reach out to MSMEs outside Odisha. Over the period as MSMEs in Odisha get better equipped, these jobs can be performed by them.
- Gradually CTTC will move up the technology curve and would provide support mainly for higher end technologies and so on.

10.7 Industry collaborations and associations

The objective of this section to understand the potential areas of collaboration and association the new TC at Bhiwadi can form and further support MSMEs. The key stakeholders for Bhiwadi TC and respective areas for tie up have been mapped subsequently.

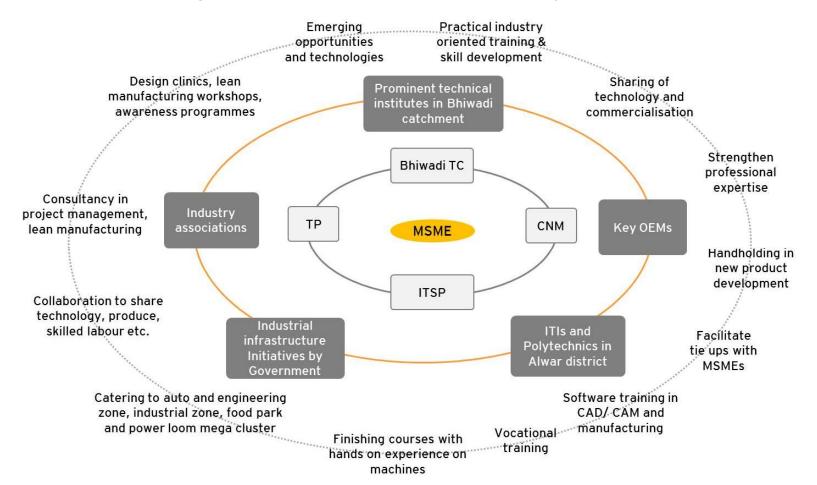


Figure 39: Potential areas of collaborations or association with key stakeholders

SN	Stakeholder type	Name	Potential areas of Collaborations and association for Bhiwadi TC^{40}
1	Prominent technical institutes in Bhiwadi catchment	Delhi Institute of Tool Engineering (DITE), Wazirpur and Okhla Indian Institute of Technology (IIT), Delhi	 DITE is a centre of excellence for tool engineering. The Bhiwadi TC can collaborate with DITE with the objective to strengthen its professional expertise and skilled manpower in the field of tool engineering. Further, emerging opportunities and technologies can be jointly met with respect to the global revolution in tool engineering. TC can tie up with these prominent institutes for student
		Indian Institute of Technology (IIT), Jodhpur Indian Institute of Technology (IIT), Jodhpur Netaji Subhas Institute of Technology (NSIT), Delhi National Institute of Technology (NIT), Jaipur BITS (Birla Institute of Technology and Science), Pilani BML Munjal University, Gurgaon, Haryana Delhi Technology University, Delhi	 For can be up with these prominent institutes for student exchange programmes to provide better practical industry oriented training and skill development. TC can become partner for commercialisation of the research by these institutes in auto and tool engineering and help in technology sharing among MSMEs through CNM. To form technology collaboration with these institutes for technology innovation through TP.
2	Key OEM's	Honda Siel Cars India Ltd. Motherson Sumi Systems Ltd. Honda Motorcycle & Scooter India Ashok Leyland Eicher Motors Ltd.	 TC can, Provide handholding in new product development. Facilitate tie ups with MSMEs for production outsourcing etc. Support Tier I/ II suppliers to meet OEM requirements. Provide tailor made training programmes to the OEMs.

Table 38: Potential areas of collaborations and association with key stakeholders

⁴⁰ The TC will take support from Technology Partner and Cluster Network Manager in mentioned areas wherever required

SN	Stakeholder type	Name	Potential areas of Collaborations and association for Bhiwadi TC^{40}
		Hero Motor Corp	
		Maruti Suzuki	
		Tata Motors	
		Mahindra Renault	
		Hindustan Motors	
		Bajaj Motors	
		Harley Davidson	
		ITI, Bhiwadi	The Bhiwadi TC can tie up with the ITI /Polytechnics/ engineering
		Bhiwadi College of Polytechnic	colleges in Alwar district to provide training to the students for the
		Govt. Polytechnic College, Alwar	development of various skill sets like;
		Govt. Polytechnic College, Neemrana	Software training to its students in CAD/ CAM and
		Sidhi Vinayak Polytechnic, Alwar	manufacturing.
		Laxmi Devi Institute of Engineering & Technology,	During summer vacation, the TC can conduct vocational
	ITI and	Alwar	training programmes for students.
3	Polytechnics in	Bansur Polytechnic College, Alwar	TC can further conduct finishing courses for students post
	Alwar district	Dholaplash Polytechnic College, Alwar	completion of their diploma/ITIs. Finishing courses provide for
		Dr. Radha Krishan Polytechnic Institute, Alwar	sufficient hands on experience on machines, which helps
		Ch. Charan Singh Institute of Engg. & Tech, Alwar	students develop expertise in machining and increase the
		Maharana Pratap Institute of Polytechnic, Bhiwadi,	employability of the students.
		Alwar	TC can help in development of similar finishing courses to train
		MJF Polytechnic College, Alwar	students in the premises of these institutes.
		Institute of Engineering & Technology, Alwar	

SN	Stakeholder type	Name	Pc	otential areas of Collaborations and association for Bhiwadi TC ⁴⁰
		St. Margaret Engineering College, Neemrana, Alwar		
		Alwar Institute of Engineering & Technology, Alwar		
		Siddhi Vinayak College of Science & Higher Education,		
		Alwar		
		Siddhi Vinayak Engineering & Management College,		
		Alwar		
		Northern Institute of Engg. & Technical Campus, Alwar		
		Laxmi Devi Institute of Engineering & Technology,		
		Alwar		
		Modern Institute of Technology & Research Centre,		
		Alwar		
		CIPET (Central Institute of Plastics Engineering &		The Bhiwadi TC can collaborate with CIPET with the objective to
		Technology) - 2 Tool Rooms at Murthal (Harayana) and		strengthen its expertise in tool manufacturing, research and
		Jaipur (Rajasthan)		development etc.
		A special auto and engineering zone has also been		Existing infrastructure of the auto and engineering zone,
	Industrial	developed in the Pathredi Industrial Area and another		industrial zone, food park and power loom mega cluster, can be
4	infrastructure	special zone is being planned in Bhiwadi.		leveraged by new TCs by catering to the respective industries.
	Initiatives by	Agro Food Parks - Matsya IA at Alwar		TC can further collaborate with these zones/ clusters above to
	Government	Japanese zone in Neemrana.		share technology, produce, skilled labor etc.
		Ministry Of Textile - A Mega Cluster for power loom in		TP can guide them in different high-end technologies for
		Bhilwara in Rajasthan sanctioned during 2010-11.		manufacturing and other process.
		Export Promotion Industrial Parks have been set up at		These clusters will have easy access to market. CNM can
		Sitapura in Jaipur, Neemrana in Alwar and Boranada in		collaborate with them in future for different initiatives.

SN	Stakeholder type	Name	Potential areas of Collaborations and association for Bhiwadi ${\rm TC}^{40}$
		Jodhpur.	
		ELCINA electronics manufacturing cluster	
5	Industry associations	Prominent industry associations include; BMA, NIA, ACMS, BCCI, GIA,FSIA, MIWA	 TC can conduct various initiatives with industry associations and MSME members; design clinics, additive manufacturing and lean manufacturing workshops, awareness programmes such as quality management system/quality management tools etc. During these workshops, TC can educate about the details of different promotional policies and schemes of DC, MSME, Govt. of India (e.g. National Manufacturing Competitiveness Programme) for benefit and sustainable growth of MSMEs. TC can also provide consultancy services in the areas of project management, lean manufacturing etc. to these associations and MSME members.

10.8 Technology collaboration

TC at Bhiwadi will venture into multiple new areas and to facilitate technology transfer and improve market linkages, role of TP and a CNM has been planned under TCSP.

- The TP will help identify and define globally competitive technological capabilities required in the cluster and assist proposed TC in building this capability through planning and handholding over a period of six years. The Technology Partner (TP) is required to enhance the capability and service offerings of TCs such that they transform to become models of manufacturing excellence for MSME. They need to become a trusted partner for MSMEs to learn how to attain manufacturing excellence and attain associated excellence in skills development. The services of the TCs include being exposed to the potential impact of new and relevant technologies, trainings on use of technologies/equipment, providing access to cutting-edge equipment, developing and testing new products and patenting. The key objectives of the TP include:
 - In conjunction with all stakeholders of the TCSP identify and define the globally competitive technological capability required by TCs, assist in their execution and provide handholding during their roll out.
 - Supporting the up gradation of the existing TCs and establishment of new TCs for the manufacturing sector
 - Augment services being offered by the TCs with respect to identified technologies and clusters with respect to training, production assistance (including optimization of equipment utilization) and technical advisory, resulting in increase in revenues of TCs focused at the manufacturing sector
 - Support TCs to increase productivity and competitiveness of general engineering (specially automotive and precision engineering)focused MSMEs by
 - Exposing them to existing and expected future technologies
 - Develop skills of the workers and students in the identified technologies and clusters
 - Offering advice/recommendations to MSMEs (clients) who directly or indirectly supply to large auto OEMs or automotive and automotive component manufacturers.

All investment decisions (technological & other) and work prioritization in TCs must be intrinsically connected with the market place and efficiently translate market needs to products and services that (satisfy these needs), & will be enabled by technology and enriched by global knowledge & expertise of the various stakeholders including the TP, empowered by global networks and people.

- The CNM will be appointed for a period of six years to facilitate cluster and market development to realise improved competitiveness. The CNM will work closely with the MSME clusters to understand their needs and requirements and get OEMs/ buyers involved in the program. The CNM will strengthen market linkages of TC with the MSMEs in the cluster it serves, trade and industry associations, academia, educational institutions, applied research institutions, service providers, other government support institutions, workers and skill seekers. Existing research institutions which could be potential collaborators for specific technologies are CMRI, SAMEER, NML, IISc etc. The CNM would work towards the following key objectives:
 - Increase of business opportunity for MSMEs through new market linkages.
 - Increase competitiveness of supply chains of large firms by enhancing the quality, reliability and productivity of MSME suppliers.
 - Increase the number of MSMEs utilizing the services of TCs resulting in increase in revenues of TCs
 - Enhance competitiveness of the cluster business environment:
 - Increase access by MSMEs to a network of business development services (BDS) which address needs not in the domain of TC expertise
 - Increase access by MSMEs to network of financial service providers
 - Increase awareness of opportunities in the public sector to contribute to a more competitive business environment.
 - Establish closer cooperation of key innovation stakeholders to enhance product and process innovation. This would include linking the research agendas of applied research and education institutes/organizations to industry and market requirements and promoting joint research and development projects.
 - Facilitate closer cooperation amongst skills development and labor market stakeholders to increase the number of workers/ trainees from TCs finding long term employment to improve their livelihood.
 - Establish a business model which ensures financial self-sustainability of the CNM as before the end of the TCSP funding window.

All investment decisions (technological and other) and work prioritization in TCs must be intrinsically connected with the market place and efficiently translate market needs to products and services that (satisfy these needs), and will be enabled by technology and enriched by global knowledge and expertise of the various stakeholders including the CNM, empowered by global networks and people.

Quality System

11. Quality system

The new TC would further aim to obtain various process certificates to enhance its competitiveness like;

Name of certification	Area	Details
ISO 9001	Quality	This would help to monitor, control, and improve quality of the
	Management	TC
	System	It is a series of standards that define, establish, and maintain a
		quality assurance system for manufacturing and service
		industries
		ISO 9001 deals with the requirements that organizations
		wishing to meet the standard must fulfil
ISO 14000	Environmental	Will help to address various aspects of environmental
	Management	management of the TC
	System	It provides practical tools to identify and control environmental
		impact and constantly improve their environmental performance
		These standards call for analysis of the entire life cycle of a
		product, from raw material to eventual disposal and focus on
		awareness of the processes and procedures that can affect the
		environment
ISO 29990	Learning	For quality professional practice, performance and enhance
	services for	transparency
	non-formal	 Allows for comparison on a worldwide basis of learning services,
	education and	and management standards in the field of non-formal learning
	training	
ISO 50001	Energy	Gives requirement for energy management systems
	management	Establishes framework for industrial plants; commercial,
	systems	institutional and government facilities and entire organisations
		to manage energy usage
OHSAS	Occupational	Is an internationally-applied British Standard for occupational
18001	Health and	health and safety management systems
	Safety	It provides for the elements of an effective safety management
	standard	system which can be integrated with other management systems
		and help organizations achieve better occupational health and
		safety performance and economic objectives
TS 16949	Automotive	Is an international Quality Management Standard specifically for

Table 39: Indicative certif	ications of quality systems
-----------------------------	-----------------------------

Name of certification	Area	Details			
	Industry	the Automotive Industry to improve quality and assure the			
	Quality	integrity of supplies to the industry			
	Management	Results in substantial improvements in all aspects of quality,			
	Standard	delivery and overall efficiency throughout the supply chain			
		It prescribes for technical specification aiming to the			
		development of a quality management system that provides for			
		continual improvement, emphasizing defect prevention and the			
		reduction of variation and waste in the supply chain			

- The TC will essentially adopt the 5S technique for process improvement to clean and organise its workspace to improve the workflow. Further trainees will be trained and exposed to 5S process improvement technique. This would require the TC to do the following;
 - Sort: To de-clutter the workspace and prioritise tools and materials used frequently, the TC will sort everything in the work area so that unnecessary items (tools, parts, equipment, storage bins, etc) can be removed and either discarded or stored elsewhere.
 - Straighten: This will involve creating storage solutions that would facilitate orderly work flow of everything in the TC by placing more frequently used items for quick and easy access.
 - Shine: This will require efforts in the initial phase involving painting and installing better lighting to make the workspace clean and tidy. Further during ongoing activities at the TC, the work space and equipment will be cleaned and restored to their proper place at the end of each shift. Basic preventative maintenance tasks like tightening, oiling, restocking will also be part of this. The workstation would then be ready for the next user (or the next day) and the order created in the first two steps will be preserved.
 - Standardize: The objective of the same would be to make everyone in the TC familiar about the current steps in order to follow and establish expectations. TC would conduct training, create documented procedures, work instructions, use visual guides, checklists, and/or photos for easy understanding of any changes made. Standardised ways will increase efficiency and be user friendly for TC employees and others.
 - Sustain: Sustaining the processes would be important to ensure that focus doesn't drift away from 5S. TC would adopt strategies like daily meetings, mini-audit and ongoing continuous improvement efforts to sustain the 5s.

Infrastructure and Facilities

12. Infrastructure and facilities

The infrastructure of the proposed Bhiwadi TC has been developed based on the requirements, recommended norms, capacity data of the existing TCs capacity, discussions with key stakeholders and the experience of the team in providing professional advice on similar projects. The team has studied the applicable AICTE/ NCVT norms for development of infrastructure facilities for engineering and technology institutes and detailing out the infrastructure provisions for the proposed TC (attached as Annexure 18.7 for reference) in view of the same. Also leading practises form international training institutes have also been considered. The TC will be built on area of around 10.08 acres and the layout will have following blocks with required infrastructure.

- Production Block: The highest priority has been given to the allocation of space for installation of machines for production activities. Depending on the space required by the machines, the area for manufacturing should be demarcated which would also include other facilities like toilets, washrooms and change rooms, adequate space for their mobility, clean drinking water in their vicinity etc. This block will also have metrology section which can be accessed by industry directly.
- Training Block: This area will have classrooms, labs, conference hall, faculty rooms and facilities for training / seminars/ workshops etc.
- Administrative Block: This block will have GM and DGMs Office and secretariat. It will also house office and desk space of all management, professional staff, administrative and support staff, library and other amenities such as conference room with video conferencing facility, meeting rooms etc.
- Utilities Block: The utilities block comprises of areas that will house main electrical meter, VCBs, HT panel, distribution panel and power back up DG plant. The utilities block will also house water pumps, purification plant and chilling plant, water treatment plantetc. The open areas around the building will also have some utilities provision such as rain water harvesting pits and panels for the operation of external lighting. Utility will also include sewage treatment plant at an appropriate location.
- Hostel and staff accommodation: The hostel blocks will comprise of accommodation for the students (separate for males and females). A few staff quarters (for driver, security officer, wardens boys and girls hostel, maintenance –mechanical and electrical, electrician, store keeper etc.) will also be constructed to house some of the emergency staff or on need basis.
- Open Areas: The open areas comprise of drive way, rain water harvesting pit and landscaped areas including the facade and main entry of the TC. The size of the open area will depend on the design strategy adopted by the CMC.
- Others: This will include canteen, parking, security room etc.
- Basic amenities: Apart from the above facilities the campus will have basic amenities with provision for;

- Drinking water
- Toilets
- Dining room as a hygienic area and place away from the work environment for rest breaks and the consumption of food
- Change rooms to enable employees to change (e.g. uniforms or dirty work clothing) with privacy and security. Such facility helps to reduces employee exposure to and potential spread of contaminating substances used in work processes
- Personal storage for the secure and clean storage of personal belongings or clothing, lockable where necessary
- Immediate availability of doctors, health supervisors and ambulance and sufficient first aid kits
- Fire safety with smoke alarms to protect people against death and injury from fires. Providing fire safety awareness to employees and conduct fire drill from time to time
- Fire assembly area in case of fire or natural calamity
- Dustbins with proper colour coding in green for organic, yellow for glass, white for paper, grey for metal, blue for plastic, red for hazardous products

Details	Nos.	Total Area (Sq. mt.)
Production Block		4,500
Stores including raw material		250
Disposal yard		100
Trial Room		250
Heat Treatment		200
Tool Assembly		700
Machine Shop		2,000
Metrology & Inspection		500
Production Office (Cabins, Documentation & others)		250
Design Office		200
Toilet Block		50
Training Block		5,344
Sr. Manager/HoD Room	1	54
Training Office		54
Manager Room	1	54
Reception & Counselling		108
Faculty Room		216
Library with facility	1	108
Multi-purpose hall for examination/drawing/reading room	1	216

Table 40: Details of proposed infrastructure

Details	Nos.	Total Area (Sq. mt.)
Classrooms	8	600
Labs	30	1,620
Workshops, including incubation centre	3	2,268
Toilet		100
Admin Block		624
GM Office & Sect		108
DGM Office		54
Purchase Officer cabin		
Accounts cabin		54
HR & Admin		
Marketing		54
Reception Area		108
Placement Cell with VC		54
Record Room		54
IT Dept/Server Room		54
Manager Admin Cabin		54
Toilet Block		30
Conference Rooms		638
Conference Hall 1 (for 30 people)	1	108
Conference Hall 2 (for 150 people)	1	400
Toilet		30
Lunch Area		100
Others		2,285
Staff Qtrs (60sqmt/ quarter)	8	480
Hostel dining area (incl. kitchen, toilet, store etc.)	1	300
Canteen (incl. toilets, kitchen, store, common facility etc.)		1,200
Parking		
Utilities Room - DG Set, Transformer, UPS		250
Security Room (incl. toilet)		30
Bank Counter		25
Total		14,459

Hostel and staff accommodation: The hostel block will comprise of accommodation for students enrolled under fulltime courses along with the hostel warden. Based on calculations, it has been estimated that around 1,500 to 1,550 trainees will be in fulltime courses at any given point of time. Further, on the basis of study conducted and discussions with heads of some of the existing MSME TCs, the provisioning of hostel facility has been done for approximately 25% of the above mentioned capacity. Therefore, it is proposed to develop the hostel capacity for around 396 trainees and out of which 15% (around 60) will be reserved for female trainees. The hostel building has been planned to be G + 3 structures with provision for further vertical expansion depending on future requirements. Part of the ground floor of the hostel building will be reserved for use as hostel office, other common facilities etc. The space on rest of the floors will be developed as rooms for accommodation of students. The details of proposed hostel infrastructure have been given in the following table. Additionally, eight emergency staff quarters will also be constructed to house some of the key management officials as per requirement. Initially the staff quarters block will be a G+1 structure with a provision of further expanding it vertically depending on future requirements.

Hostel	Category	Floors	Trainees per Room	Number of trainees	Area per trainees (sq. mt.)	Total Area (sq. mt.)
Hostel No.1	Boys	G+3	4	240	8	1,920
Hostel No.2	Boys	G+3	2	96	10	960
Hostel No.3	Girls	G+3	2	60	10	600
Total				396		3,480

Table 41: Details of proposed infrastructure for hostel

Note: All viable options will be studied to decide on the design of the proposed block for hostel and staff quarters. The number of floors for these facility buildings and all other associated details can be further finalised with the appointment of CMC for development of the campus for TC.

As per the details of proposed infrastructure given in above two tables, the construction of the Bhiwadi TC will include development of 17,939 (14,459 + 3,480) square metre of built up area in total. Per square metre cost of construction has been estimated to be INR 22,000. Further, the tentative cost for development of underground water tank, rain water harvesting system, storm water drainage network, water treatment plant, sewage treatment plant, street lighting, development of internal roads, landscaping and grey water treatment plant for entire campus has been estimated to be around INR 300 lakhs. Further discussion has already been carried out with officials of RIICO for development of boundary wall which is estimated to cost around INR 100 lakhs. The detail for development of campus infrastructures is as follows;

T			
Table 42: Cost	for developmen	t of campus	infrastructures

SN	Hostel	Cost (in INR Iakh)
1.	Cost of development of build-up area @ 22,000 per sq. mt. for 17,939 sq. mt.	3,946.58
2.	Underground water tank, rain water harvesting system, storm water drainage network, water treatment plant, sewage treatment plant, street lighting, development of internal roads, landscaping and grey water treatment plant and boundary wall	400
3.	Total	4,346.58
4.	Contingency @ 5%	217.33
5.	Grand total	4,563.91

Further provisioning towards establishment of other associated infrastructure will be done for the planned capacity and is listed in the following table;

SN	Other Infrastructure	Nos.	Budgeted Cost (INR lakhs)	Total Cost (INR lakhs)
1	Office & Storage Furniture	60	0.5	30
2	Hostel Furniture	400	0.25	100
3	Canteen and Hostel Dining hall furniture	20	0.60	12
4	Kitchen equipment	2	20	40
5	Other Office equipment	50	1	50
6	Laptop	20	0.6	12
7	Desktop	40	0.5	20
8	Photocopier cum printer	2	3	6
9	Vehicle	2	12.5	25
10	Preliminary and Pre-operative expenses	1	40	40
12	Miscellaneous			50
13	Subtotal			385
14	Contingency @ 5%			19.25
	Total	1		404.25

Table 43: Details of other infrastructure

Above all, the development of campus infrastructure will be done keeping the following guidelines in mind;

Campus Layout/ Plan: Campus layout is crucial for successful performance of the TC. At least 30% green area will be maintained and landscaping will be done to improve aesthetics of the surrounding while maintaining habitats conductive to natural fauna. Also, efforts will be made to conserve existing vegetation and other rich biodiversity in the premises as well as vicinity. Apart from this, there will be the following considerations while planning the campus layout:

- Site drainage: Existing drainage pattern of the available site will be studied and the drainage system required for the TC will be constructed in line with the drainage pattern. Storm water drain will be constructed separately so as avoid mixing of the fresh and the waste water.
- Heat island effect: Site will be planned properly to mitigate the heat island effect (Thermal gradient difference between developed and undeveloped areas) by following measures:
 - At least 40% of the non-roof impervious surfaces on the site (including parking lots and walkways) will be shaded
 - Pavements and walkways should be painted in light colour (solar reflectance index > 0.5)
- Boundary: The campus will be provided with boundary wall in all the directions to avoid encroachment, theft and safety.
- Trees will be planted in large numbers to provide natural shade in the open areas. This helps to reduce the temperature on campus in comparison to the vicinity
- Efforts will be made to utilize natural light to the maximum possible extent and provision should be made for natural ventilation
- Green building codes may be adopted while designing the building layout so as to ensure following environmental safeguards;
 - Renewable energy in terms of solar water heater, solar panels, solar street light may be used
 - LED/CFL lights will be used within the premises to reduce the energy consumption
 - Provisioning of water treatment and recycling facility to reduce water consumption
 - Water harvesting arrangement to recharge the ground water and/or reduce dependency on ground water
 - Provisioning of waste management including practices to minimize waste generation, etc.
- Criteria mentioned in the National building code will be followed so as to ensure that all the safety precaution like escape routes/emergency exits, setting of machinery providing appropriate working space, etc. is maintained
- Hazardous material like asbestos sheets should be avoided in any part of the structure
- Substitutes to natural resources will be encouraged in appropriate ratio so as to decrease
 natural resource consumption while maintaining the required strength (example: Fly ash
 may be used in small percentage instead of cement for construction, composite material
 may be used construction of doors instead of wood, etc.
- Provision of toilets for both men and women will be made in appropriate number so as to ensure comfortable and hygienic working conditions

- Energy efficient products like 5 star rated air conditioner, refrigerator, energy efficient motors, etc. will be used in the TC's
- Detailed building plan preparation: The building design is crucial for sustainable performance of the TCs. A number of factors including energy efficiency, materials of construction, natural light and ventilation, insulating, etc. must be kept in mind in order to maintain eco-friendly operations. Also, adherence to aspects related to safety like, resistant to earthquakes, proper evacuations, etc. will ensure successful operations of the TC.
- Construction management: Construction at the site involves a number of activities. These activities may lead to certain EHS impact on the existing natural settings and therefore, appropriate mitigation measures will be required to be put in place so as to minimize or avoid this impact. A snapshot of the issues with the basic principles to be kept in mind during construction is given in the EHS section of this DPR.

Figure 40: TC layout plan⁴¹

⁴¹ The given TC layout is tentative and the site plan will be further finalized in more detail after the appointment of Construction Management Consultant (CMC)

Expenditure pattern

13. Expenditure pattern

13.1 Capital expenditure

Total capital expenditure to the tune of around INR 12,912 lakhs is envisaged for the setting up of new TC at Bhiwadi. Summary of the Capital Expenditure is provided as below:

Table 44: Capital expenditure

Сарех	Cost (INR Lakhs)
Production Machinery and equipment	4,908
Training machines and equipment	2,748
Other infrastructure	404
Incubation centre machines and equipment	288
Building and construction	4,564
Total Capex including contingency	12,912

In addition to the above mentioned capital expenditure, pre-operative expenses to the tune of INR 258 lakhs will be incurred towards consultancy fees, obtaining clearances and approvals.

13.1.1 Plant and machinery

Total expenditure on machines to the tune of around INR 8,348 lakhs is envisaged for the setting up of new TC at Bhiwadi.

Table 45: Plant & Machinery

Сарех	INR Lakhs
Total Plant and Machinery	7,950
Contingency @ 5% of capex	398
Total Capex including contingency	8,348

The capital cost estimate for the proposed modernisation project has been prepared jointly by O/o DC-MSME and EY team based on inputs from the following:

- Technology workshop at Bhubaneswar; 2 day detailed sessions led by Dr. Clive Hickman on 'Future Manufacturing Technology Trends',
- Market opportunity assessment by EY team
- Validation of technology needs by detailed discussions and site visits to key manufacturing organisations such as Maruti Suzuki, Hero Motocorp etc.,
- Site visits and discussions with local industry and industry associations such as RIICO, Bhiwadi Manufacturing association.
- Inputs from Office of DC MSME

Inputs as per the World Bank Environment and Safety requirements

13.1.2 Land & building cost

Bhiwadi has around 10 acres of land available for setting up of the facility of the TC.

Table 46: Land & building cost

SN	Hostel	Cost (in INR lakh)
1.	Cost of development of build-up area @ 22,000 per sq. mt. for 17,939 sq. mt.	3,946
2.	underground water tank, rain water harvesting system, storm water drainage network, water treatment plant, sewage treatment plant, street lighting, development of internal roads, landscaping and grey water treatment plant and boundary wall	400
3.	Total	4,346
4.	Contingency @ 5%	217
5.	Grand total	4,563

13.2 Operating expenditure

The operating expenditure for the TC has been classified into variable operating expenditure and fixed operating expenditure.

13.2.1 Variable operating expenditure

Variable operating expenditure has four key heads. Expenditure under each head has been identified for the key income streams:

- a) Raw materials
 - Raw materials for finished goods
 - Raw materials for training
- b) Consumable tools
 - Consumable tools for finished goods
 - Consumable tools for training
- c) Consumable stores
 - Consumable stores for finished goods
 - Consumable stores for training
- d) Utilities (electricity and water)
 - Utilities for finished goods
 - Utilities for training

Description	Unit	Norms
Variable operating cost		
Raw material		
RM for Finished goods	% of FG	20.6%
RM for Training	% of Trg	1.0%
Consumable tools - FG	% of FG	2.5%
Consumable tools - Trg	% of Trg	1.0%
Consumable stores – FG	% of FG	2.0%
Consumable stores - Trg	% of Trg	0.6%
Utilities		
Electricity & water		
FG	% of FG	6.5%
WL	% of JW	6.5%
Training	% of Trg	4.9%

Table 47: variable cost assumptions

13.2.2 Fixed Operating expenditure

Fixed operating expenditure has four key heads. Expenditure under each head has been identified for the key income streams:

a) Salary and wages/ establishment expenses

The salary expenses include salary for employees of proposed TC at Bhiwadi. There will be 60 employees on regular contract and ~ 170 will be on temporary contract/honorarium visiting.

b) Repairs and maintenance (R&M)

Cost of repair and maintenance has been calculated for

- Plant and machinery installed R&M for plant and machinery has been taken as a percentage of the gross block in an operating year.
- Buildings

R&M for plant and machinery has been taken as a percentage of the gross block in an operating year,

c) Training expenses

Training expenses primarily comprise of expenses incurred for external faculty visiting to the TC from time to time as part of Short term and Long term trainings. These expenses typically include faculty fees, hotel and transportation.

d) Other production and administration expenses

These include expenditure on heads like transportation/entry tax/ freight, Vehicle expenses, Printing and stationery, traveling and conveyance, audit, consultancy, advertisement,

publicity, marketing, telephone, internet, bank charges, miscellaneous expenses. Expenditure under each head has been identified for the key income streams- Finished goods and Training

e) Insurance of new plant and machinery

Insurance expense for new plant and machinery includes the insurance cost for the new machinery to be installed. The same has been calculated as a percentage of the gross block of new machines.

Description	Unit	Norms
Fixed Operating Cost		
Salaries & Wages	Detailed assumptions given in a separate table	
R&M (Plant & Mach)	% of Plant	1.0%
R&M (Building)	% of Building	1.7%
Training Expenses		10%
Other Prod. & Admin. Exps	%of income	8%
Insurance cost (New P&M)	% of P&M	0.5%
Marketing expenses (1st year)	Rs. Lakhs p.a	25
Marketing expenses (2 year onward)	Rs. Lakhs p.a	15

Table 48: Fixed Operating Cost assumptions

Manpower and salary cost

Manpower numbers have been designed in line with the expansion plan of the TC and ramp up of the production, training and consultancy. Manpower salary numbers are in line with the salary structure of existing TCs

Top Management	Designation	Monthly salary (INR)						Nos	S.					
	GM	1,53,861	1	1	1	1	1	1	1	1	1	1	1	1
	DGM	1,29,327						1	1	1	1	1	1	1
Sub Total			1	1	1	1	1	2	2	2	2	2	2	2
Management and Support	staff													
	Manager Admin. and	69,204	1	1	1	1	1	1	1	1	1	1	1	1
	Accounting	09,204 1			1	1					I		I	
Administration and	Sr. Officer HR	62,371						1	1	1	1	1	1	1
accounting	Officer Procurement	35,744			1	1	1	1	1	1	1	1	1	1
	Officer Store	35,744		1	1	2	2	2	2	2	2	2	2	2
	Officer Admin	35,744		1	1	1	1	1	1	1	1	1	1	1
	Senior manager	86,857		1	1	1	1	1	1	1	1	1	1	1
Design and consultancy	Manager	82,777			2	2	3	3	3	3	3	3	3	3
	Sr. Engg.	64,806			2	3	3	3	3	3	3	3	3	3
	Senior Manager	86,857		1	1	1	1	1	1	1	1	1	1	1
Production	Manager Prod./Planning	82,777			1	1	2	2	2	2	2	2	2	2

Table 49: Manpower and salary assumptions

Top Management	Designation	Monthly salary (INR)					Nos	5.					
	Manager Metrology	82,777		1	1	1	1	1	1	1	1	1	1
	Manager H/T	82,777		1	1	1	1	1	1	1	1	1	1
	Manager Manitenance	82,777	1	1	1	1	1	1	1	1	1	1	1
	Sr engg. Maintenance	64,806				1	1	1	1	1	1	1	1
	Sr. Engg. Production Engg. / Foreman		3	3	3	3	3	3	3	3	3	3	3
			2	4	6	6	6	6	6	6	6	6	6
	Senior Technician	29,512	1	2	2	2	2	2	2	2	2	2	2
	Senior Technician Maintenance (Mech + Elect)	29,512	1	1	2	2	2	2	2	2	2	2	2
	Senior Manager	86,857	1	1	1	1	1	1	1	1	1	1	1
	Manager Mechanical	82,777		1	1	1	1	1	1	1	1	1	1
Training	Manager Electronics	82,777		1	1	1	1	1	1	1	1	1	1
	Manager Short term	82,777					1	1	1	1	1	1	1
	Sr. Engg.	64,806	1	5	6	6	6	6	6	6	6	6	6
	Engg.	34,240	1	4	8	10	10	10	10	10	10	10	10
	Senior Technician	29,512	1	2	2	2	2	2	2	2	2	2	2

Top Management	Designation	Monthly salary (INR)	Nos.											
Sales and marketing	Manager Marketing	82,777		1	1	1	1	1	1	1	1	1	1	1
Sales and marketing	Officer Sales	35,744			1	1	1	1	1	1	1	1	1	1
Total (Mgt & Support 1 19 41 51 56 58 staff) 1 19 41 51 56 58					58	58	58	58	58	58	58			
Number of employees on t	temporary contract													
	Training	15,000	-	3	21	44	75	108	119	131	144	151	159	159
	Contractual Employees (Production)	10,000			4	10	10	10	12	12	12	12	12	12

Financial Analysis

14. Financial analysis

14.1 Key assumptions

Project construction and commencement of operations

The project construction is expected to start in the financial year 2015-2016. It is assumed that, the construction period and installation of machines shall be completed in 15 months. Full-scale operations will commence at the end of the construction period of 15 months. The infrastructure development will coincide with the arrival of machines to be able to start the operations as planned.

Table 5	50: Key	assumptions
---------	---------	-------------

Start of Project	1-Sep-15	(2015-16)
Construction period (Months)	15	
Commencement of operation, date	1-Dec-16	
Number of years, useful life of machines and equipment (as per depreciation rules)	10	
Maximum days of operation in a year	300	

14.1.1 Income assumptions

Production

	Machine	Estimated Machine Rate/Hour*	Shift	Hours
1.	CNC Milling-5axis	4,500	3	24
2.	CNC Milling-3axis	2,500	3	24
3.	Die spotting press	1,500	3	1.2
4.	Hydraulic press	1,000	3	3
5.	Mechanical press	3,00	3	24
6.	Wire EDM	1,500	3	24
7.	EDM	1,000	3	24
8.	Injection Moulding machine	1,500	2	16
9.	CNC Lathe	5,00	3	24
10.	Gun drilling machine	2,50	2	16
11.	Radial drill machine	150	3	1.2
12.	Surface Grinding	300	1	8
13.	Cyl Grinding	300	2	16
14.	Vacuum Heat treatment plant	Estimated rate per	NA	NA

Table 51: Production assumptions

	Machine	Estimated Machine Rate/Hour*	Shift	Hours
		week is INR 60,000		
15.	СММ	2,000	2	16
16.	CAD Software like CATIA, UG etc	10,000	1	8
17.	Engg. Analysis software like ANSYS, mould			
	flow, autoform, PAMstamp etc.	2,000	1	0.4
18.	Additive Manufacturing/3D printing/RPT	3,000	1	8

Machine utilisation	Year	
2 nd year of production	2018-19	25%
3 rd year of production	2019-20	40%
4 th year of production	2020-21	50%
5 th year of production	2021-22	60%
6 th year of production	2022-23	70%
year on increase in machine utilisation 7 th year onwards	2023-24	10%

SN	Incubation Centre Machines	Nos	Machine Rate/Hr	Shifts	Total Hours
1.	Mech Press	2	150	2	16
2.	Hyd. Press	1	150	2	16
3.	Hand Injection Moulding M/c	2	100	2	16
4.	Injection Moulding M/c	1	200	2	16
5.	CNC Milling 5 axis (minimum specifications)	1	600	2	16
6.	CNC Turn Mill	1	350	2	16
7.	CNC-EDM+WEDM	2	250	2	16
8.	Surface Grinding	1	150	2	16
9.	Cyl-grinding	1	150	2	16

Training revenue assumptions

Table	52.	Training	revenue	assumptions
I able	ΟZ.	naining	revenue	assumptions

SN	Specialisation	Course name	Duration (months)	Fee/ student (INR)	Batc h size	No. of batches / year
1	Tool Making	Diploma in Tool & Die making	48	80,000	120	1
	and Metal	Machinist	12	30,000	60	4
	Cutting	Post Diploma in Tool Design	12	50,000	30	2
		Post Diploma in Tool Manufacturing	12	50,000	30	2
		Advance Diploma in CNC- Programming & Operation	6	25,000	30	4
		Master of CAD/CAM/CNC	4	20,000	30	3
2	Maintenance	Machine Maintenance- mechanical	3	15,000	20	4
		Maintenance Technician	3	10,000	20	4
		Machine Maintenance- mechanical (Part Time)	6	18,000	20	2
		Maintenance Technician (Part Time)	6	12,000	20	2
3	CNC Manufacturing	CNC lathe programming and operation (Full Time)	2	9,000	30	12
	, CAD/ CAM	CNC lathe programming and operation (Part Time)	4	10,000	30	12
		CNC Milling Prog and Operation (Full Time)	2	10,000	30	12
		CNC Milling Prog and Operation (Part Time)	4	10,000	30	12
		CAD/CAM/CNC ENGINEER (Full Time)	2	10,000	30	12
		CAD/CAM/CNC ENGINEER (Part Time)	4	10,000	30	6
		CAD Modelling with different softwares (Full Time)	1	6,000	30	24
		CAD Modelling with different	2	7,000	30	24

SN	Specialisation	Course name	Duration (months)	Fee/ student (INR)	Batc h size	No. of batches / year
		softwares (Part Time)				
		Computer Integrated Manufacturing (CIM)	1	7,000	30	24
4	Advance Welding	Basic Arc and Gas welding (Full Time)	3	12,000	20	4
		Basic Arc and Gas welding (Part Time)	6	10,000	20	4
		TIG welding (Full Time)	1.5	6,000	10	4
		TIG welding (Part Time)	3	6,000	10	8
		MiG welding (Full Time)	1.5	6,000	10	8
		MiG welding (Part Time)	3	6,000	10	8
		Spot Welding (Full Time)	1.5	8,000	10	2
		Spot Welding (Part Time)	3	8,000	10	4
		Stainless Steel & Aluminium welding (Full Time)	1.5	8,000	10	2
		Stainless Steel & Aluminium welding (Part Time)	3	8,000	10	4
		Welding-NCVT	12	24,000	20	1
5	Car/bike service	Car Servicing electro- mechanical	3	10,000	30	4
	training	Basic Auto electronics	3	10,000	30	4
		Servicing of Auto Air Conditioning	3	10,000	30	4
		Bike Servicing electro- mechanical	3	10,000	30	4
		Car Servicing electro- mechanical (Part Time)	6	12,000	30	2
		Basic Auto electronics (Part Time)	6	12,000	30	2
		Servicing of Auto Air Conditioning (Part Time)	6	12,000	30	2
		Bike Servicing electro- mechanical (Part Time)	6	12,000	30	2

SN	Specialisation	Course name	Duration (months)	Fee/ student (INR)	Batc h size	No. of batches / year
6	Information	Basic computer and Hardware	2	8,000	20	20
	Technology	(Part Time - 4 hrs)	2	0,000	20	20
	(Part Time	Advanced Hardware &	4	12,000	20	10
	Courses)	Networking (Part Time - 4 hrs)	т	12,000	20	10
7	Industrial and	Industrial Hydraulics	1	6,000	20	12
	process	Industrial pneumatics	1	6,000	20	12
	Automation	PLC Programming	1	6,000	20	12
		Automation Technician	4	12,000	20	3
		Industrial automation design	4	15,000	20	3
		Diploma in Mechatronics	36	1,20,00 0	60	1
		Total				

Consultancy revenue assumptions

Revenue from consultancy is expected to start in 2nd year of operation i.e. 2018-19 when the TC is fully operational and all infrastructures are in place.

SN Consulting		Year2	Year3	Year4	Year5	Year 6	Year 7	Year 8	Year 9	Year 10
	Areas		reard		50%	40%	40%	40%	40%	40%
1.	Design Support	48,48,000	77,56,800	96,96,000	1,16,35,200	1,35,74,400	1,49,31,840	1,64,25,024	1,80,67,526	1,98,74,279
2.	Product Design									
3.	Engineering Solutions	6,00,000	7,80,000	10,14,000	15,21,000	21,29,400	29,81,160	41,73,624	58,43,074	81,80,303
4.	Quality System Support	-	12,00,000	18,00,000	27,00,000	37,80,000	52,92,000	74,08,800	1,03,72,320	1,45,21,248
5.	Project Consultancy (curriculum devlop, community colleges, trainers etc.)	-	12,00,000	36,00,000	54,00,000	75,60,000	1,05,84,000	1,48,17,600	2,07,44,640	2,90,42,496
6.	Productivity Club	-	3,00,000	4,50,000	6,75,000	9,45,000	13,23,000	18,52,200	25,93,080	36,30,312
7.	Other Consulting assignments	10,00,000	15,00,000	22,50,000	33,75,000	47,25,000	66,15,000	92,61,000	1,29,65,400	1,81,51,560

Table 53: Consultancy revenue assumptions

14.1.2 Project cost and financing

The project construction will be undertaken in a phased manner. The initial phase will be of about 7 months and final phase will be of about 8 months. Phase 1 is expected to be completed in 2015-16, while phase 2 is expected to get completed by 2016-17. In the initial phase, construction of infrastructure for basic training courses is planned along with procurement of basic machines.

Table 54: Project cost and financing

Project cost and phasing		In lakhs
Particulars	2015-16	2016-17
Project Cost	1,141	11,771
Total	12,	912

The Greenfield TC project will be funded by a grant from Government of India which would be sourced through World Bank loan and equity funding from MoMSME.

14.1.3 Other financial assumptions

Terminal value assumptions:	
Discount rate	9.25%
Growth rate in perpetuity	4.0%
Cost of equity	9.25%

Repair & maintenance, (P&M)	1.0%	of P & M
Repair & maintenance, (Building)	1.7%	of Building
Insurance cost of new P&M (Post	0.5%	of Plant & machinery and
commissioning)	0.5%	Building

Working Capital Assumptions		
Margin Money	%	100%
Cash in Hand	Days	60
Accounts Receivables	Days	90
Suppliers Credit (A/P)	Days	30
Finished goods Storage	Days	30
Inventories (RM, Consumables)		
Finished goods	Days	90
Training	Days	90

Inflation (Salary etc) 10%

Depreciation Rat	es			
Asset Class		WDV	SLM	Max Depn
Tangible Assets				
	Plant and machinery	13.91%	10.34%	95.00%
	Buildings	10.00%	3.34%	95.00%

14.2 Working capital and cash flow statement

Overall net working capital requirement for the TC is expected to grow from about INR 33 lakhs in 2017-18 to INR 745 lakhs by year 2025-26.

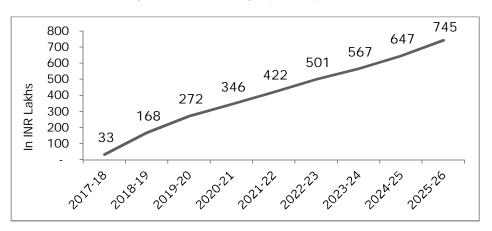


Figure 41: Net working capital requirement

Figure 42: Cash flow closing balance

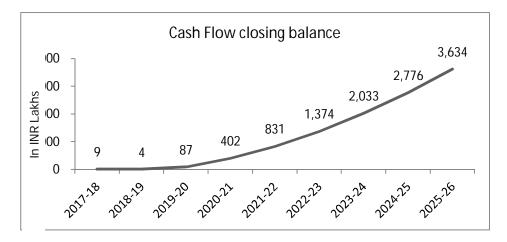


Table 55: Working capital schedule

Working Capital Schedule											
Years	2015-	2016-	2017-	2018-	2019-	2020-	2021-	2022-	2023-	2024-	2025
	16	17	18	19	20	21	22	23	24	25	26
											NR Lakhs
Raw Material Storages											
Finished goods	-	4	19	30	38	45	53	58	64	70	77
Training	0.09	1	1	2	3	3	4	4	4	4	5
Consumable tools											
Finished goods	-	0	2	4	5	5	6	7	8	9	9
Training	0.09	1	1	2	3	3	4	4	4	4	5
Consumable stores											
Finished goods	-	0	2	3	4	4	5	6	6	7	8
Training	0.05	0	1	1	2	2	2	2	2	2	3
Finished Product Storages											
Finished goods	-	7	31	49	61	73	85	94	103	114	125
Accounts Recievables	0.08	20	114	189	246	303	363	416	482	564	667
Gross Working Capital	0.32	33	171	280	362	438	522	591	673	774	899
Suppliers Credit	0.08	0	2	9	14	18	21	25	27	29	32
Net Working Capital Requirement	0.24	33	169	271	348	420	501	566	646	745	867

Table 56: Cash flow statement

Cash Flow												
Years	2015- 16	2016- 17	2017- 18	2018- 19	2019- 20	2020- 21	2021- 22	2022- 23	2023- 24	2024- 25	2025- 26	2026- 27
										IN	IR Lakhs	
Income post Depreciation	-27	-257	-1,931	-1,459	-1,004	-654	-411	-180	20	205	412	686
Add: Depreciation		114	1,552	1,359	1,191	1,043	915	803	704	619	543	478
Inflow from Grant/ Capital fund	1,141	11,771										
Grant to balance -ve cash flows, if any	30	160	400	230								
Total Cash Inflow	1,144	11,788	21	130	187	389	504	623	724	824	955	1,164
Investment in Assets	1,141	11,771										
Net Change in WC		0	33	135	103	75	75	79	66	80	98	121
Total Cash Outflow	1,141	11,771	33	135	103	75	75	79	66	80	98	121
Opening Balance		3	20	9	4	87	402	831	1,374	2,033	2,776	3,634
Surplus/Deficit	3	17	-12	-5	83	315	429	543	658	744	857	1,043
Closing Balance (Cumulative)	3	20	9	4	87	402	831	1,374	2,033	2,776	3,634	4,676

14.3 Income & expenditure statement

The income to the proposed centre from training will start accruing from year 2016-17 with completion of phase 1 (basic training infrastructure and procurement of basic machines) and start of basic courses. Initially an income of INR 31 lakhs is expected in year 2016-17. Once the overall construction is complete, the TC revenue is expected to grow from INR 251 lakhs in 2017-18 to INR 3,287 lakhs by year 2025-26.

Income and Expenditure												
Year	2015- 16	2016-17	2017- 18	2018- 19	2019- 20	2020- 21	2021- 22	2022- 23	2023- 24	2024- 25	2025- 26	2026- 27
INR Lakhs												
Income												
Training Income		30	183	390	662	959	1,055	1,161	1,277	1,341	1,408	1,478
Sale of Finished goods			65	305	488	610	732	854	939	1,033	1,137	1,250
Sale of Scrap		0	3	10	16	21	25	28	31	34	36	39
Consultancy Income		-	-	64	127	188	253	327	417	539	706	934
Total Income		31	251	769	1,293	1,779	2,065	2,370	2,665	2,947	3,287	3,702
Expenditure												
Variable Operating expenditure												
Raw materials		0	15	67	107	135	162	188	207	227	249	273
Finished goods			13	63	100	125	151	176	194	213	234	258
Training		0	2	4	7	10	11	12	13	14	15	15
Consumable tools		0	4	12	19	25	29	34	37	40	43	47
Finished goods			2	8	12	15	18	22	24	26	28	31
Training		0	2	4	7	10	11	12	13	14	15	16
Consumable stores		0	2	8	14	18	21	24	26	28	31	34
Finished goods			1	6	10	12	15	17	19	20	23	25

Table 57: Income and expenditure

Income and Expenditure												
Year	2015-	2016-17	2017-	2018-	2019-	2020-	2021-	2022-	2023-	2024-	2025-	2026-
	16		18	19	20	21	22	23	24	25	26	27
Training		0	1	2	4	6	6	7	7	8	8	9
Utilities (Electricity & water)		1	13	39	64	87	99	113	124	133	143	154
Finished goods			4	20	32	40	47	56	61	67	74	81
Training		1	9	19	32	47	52	57	63	66	69	73
Variable Operating expenditure		2	34	126	204	265	311	358	394	428	466	507
Fixed Operating Expenditure												
Salary & Wages/ Establishment expenses	27	146	336	432	524	678	772	878	1,001	1,121	1,258	1,384
Repairs and Maintenance			157	157	157	157	157	157	157	157	157	157
P&M			83	83	83	83	83	83	83	83	83	83
Buildings			74	74	74	74	74	74	74	74	74	74
Training Expenses			18	39	66	96	106	116	128	134	141	148
Other Prdnn. & Admin. Exps			19	60	100	138	160	184	206	228	255	287
Marketing expenses		25	25	15	15	15	15	15	15	15	15	15
Insurance of new machines			40	40	40	40	40	40	40	40	40	40
Fixed Operating Expenditure	27	171	595	743	902	1,124	1,250	1,390	1,547	1,695	1,866	2,031
Total Expenditure	27	173	630	869	1,107	1,389	1,561	1,748	1,940	2,123	2,332	2,538
Income (Gross Margin)	(27)	(142)	(379)	(100)	186	390	504	622	724	824	955	1,164
Depreciation	-	114	1,552	1,359	1,191	1,043	915	803	704	619	543	478
Income post Depreciation	-27	-257	-1,931	-1,459	-1,004	-654	-411	-180	20	205	412	686

Note: Figures may not match due to rounding

14.4 Balance sheet

Table 58: Balance sheet

INR Lakhs

Balance Sheet												
Years	2015- 16	2016- 17	2017- 18	2018- 19	2019- 20	2020- 21	2021- 22	2022- 23	2023- 24	2024- 25	2025- 26	2026- 27
Liabilities												
Capital fund	1,114	12,629	10,697	9,239	8,234	7,581	7,170	6,989	7,009	7,215	7,626	8,313
Capital for -ve cash flows	30	190	590	820	820	820	820	820	820	820	820	820
Total	1,144	12,819	11,287	10,059	9,054	8,401	7,990	7,809	7,829	8,035	8,446	9,133
Assets												
Fixed Assets												
Gross Block	1,141	12,912	12,912	12,912	12,912	12,912	12,912	12,912	12,912	12,912	12,912	12,912
Less: Accumulated Depreciation	-	114	1,666	3,026	4,216	5,260	6,175	6,977	7,682	8,300	8,844	9,321
Net Block	1,141	12,798	11,245	9,886	8,696	7,652	6,737	5,934	5,230	4,611	4,068	3,590
Current Assets												
Cash	3	20	9	4	87	402	831	1,374	2,033	2,776	3,634	4,676
Other Current Assets	-	0.2	33	168	272	346	422	501	567	647	745	866
Total	1,144	12,819	11,287	10,059	9,054	8,401	7,990	7,809	7,829	8,035	8,446	9,133

Note: Figures maynot match due to rounding

During the operational period of the Bhiwadi TC, the TC may utilise the accumulated depreciation towards upkeep, maintenance of existing machines or purchase of new machines to offset any impact of change in technology.

14.5 Profitability

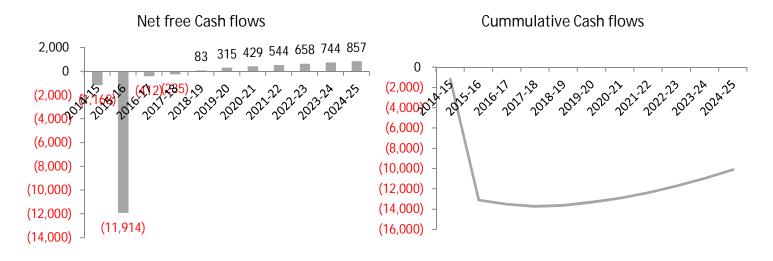

Overall project profitability has been estimated considering phased investment in plant & machinery and infrastructure. The full-fledged operations are expected to start from the year 2017-18. The project IRR for a period of 12 years till 2026-27 is 8.6%.

Table 59: Profitability with investment plant & machinery

Project IRR	8.6%
Payback period	>11 years

The project is expected to generate positive net free cash flows starting year 2018-19. However equity of about INR 820 lakhs will have to be infused in first four years to balance the negative cash flows.

Figure 43: Net free Cash flows and Cumulative Cash flows

14.6 Sensitivity analysis

Sensitivity analysis of Project IRR has been carried out with respect to the key project parameters.

- Project cost
- Construction perio0064
- Revenue from Training
- Revenue from Finished Goods
- Revenue from Job work
- Revenue from Consultancy

The project IRR is most sensitive to changes in training revenue, followed by changes in project cost, production revenue and consultancy revenue.

Training forms majority of revenue for the TC followed by production and consultancy. 5 percent increase/decrease in training revenue increases / decreases the project IRR by about 0.7%.

5 percent increase/decrease in project cost decreases/ increases the project IRR by about 0.5%

5 percent increase/decrease in production revenue increases / decreases the project IRR by about 0.4%.

Consulting being the lowest contributor to revenue has the lowest impact on project sensitivity. 5 percent increase/decrease in production revenue increases / decreases the project IRR by about 0.4%.

Sensitivity of IRR to

	Construction period (Months)			
		15	20	24
Increase in Project	-5%	9.2%	9.2%	9.2%
cost	0%	8.6%	8.6%	8.6%
	5%	8.1%	8.1%	8.1%
	10%	7.6%	7.6%	7.6%

Table 60: Sensitivity of IRR

	-7.5%	7.6%
Increase in		
Training revenue	-5%	7.9%
	0%	8.6%
	5%	9.3%
	10%	10.0%
Increase in	-10%	7.8%

Increase in	-10%	7.8%
Production		
revenue	-5%	8.2%
	O%	8.6%
	5%	9.1%
	10%	9.5%

Consultancy		
revenue	-5%	8.2%
	O%	8.6%
	5%	9.1%
	10%	9.5%

Environment, Health and Safety

15. Environment, health and safety

Effective management of environmental, health, and safety (EHS) issues entails the inclusion of EHS considerations at various levels during project implementation. It is proposed that World Bank EHS guidelines will be followed to adhere to the desirable performance levels and measures while developing the TC.

15.1 Environment

15.1.1 Air emissions

The expected manufacturing processes in the proposed TC with air emissions would be sintering, metal cutting, grinding and / or forming (including forging, wire drawing, pressing, stamping, among others), quenching, annealing and other general treatments, abrasive treatments (e.g. shot, sand blasting), solvent degreasing and emulsion, alkaline, and acid cleaning, welding, anodizing, chemical conversion coating, electroplating, painting and other metal finishing techniques (Including polishing, hot dip coating). To counter the problems, the following techniques will be used:

- Volatile Organic Compounds (VOC) emissions management strategies will be used which include:
 - Installation of refrigerator coils (or additional coils) above the degreaser vapour zone
 - Application of an air flow over the top of the degreaser that should not typically exceed 40 m / minute
 - Rotation of parts before removal from the vapour degreaser, including:
 - Installation of thermostatic heating controls on solvent reservoirs and tanks
 - Installation of in-line filters to prevent particulate build- up
 - Use of solvent recovery to reduce emissions of VOC from curing ovens
 - Use of activated carbons to recover solvent vapours
 - In order to reduce emissions during welding and coating, metal surfaces would be carefully cleaned
 - Coatings would be removed from the base metal before welding preferably using mechanical cleaning (for example blasting with CO₂-pellets) instead of solvents.
- Dust: Dust emissions management strategies will be used which include:
 - Installation of in-line aspirators with filters or scrubbers. Electrostatic precipitators (ESP) will also be employed
 - Where possible, maintaining wetness on the metal surface in order to prevent or minimize dust production
- > Acid / Metals Content in Mists and Fumes: Management strategies for acid / metal content in

mist and fume emissions will be used which include:

- Use of fume suppressants as additives to electroplating baths to reduce air emissions of electroplated metals (e.g. chromium)
- Installation of in-line aspirators with filters to eliminate acid compounds
- For metals or metal oxides abatement, installation of filters capable of handling complex metals
- Welding fumes (a mixture of metals, oxides, and smoke from burning off oil) would be controlled by removing coatings from base metals

15.1.2 Wastewater and liquid wastes

Typical sources of wastewater discharged from product manufacturing process in the proposed TC would include water-based cleaning and rinsing streams, cooling water, alternative cleaners, wastewater generated from cutting, blasting, deburring and mass finishing activities and water-based metalworking fluid operations. To counter the problems, the following techniques will be used:

- Oil-based Effluents
 - Effluent separation from wastewater, and special disposal will be done if recycling is not possible
 - Standardization of use of oil types, and efficient scheduling of processes that require use of varying oil types
 - Extension of the life of cooling liquid through use of centrifuges, introduction of periodical analyses, use of biocides and ultrafiltration, and removal of oils by disk or belt skimmers.
 - Appropriate housekeeping techniques to prevent cutting oils from being contaminated with solvents will be used
 - Oil quench baths would be recycled by filtering out metals
 - Metal-working fluids would be recovered using collection (or drip) pans under functional machinery;
 - In cold forming or other processes where oil is used, automatic oilers would be used to reduce grease accumulation. A stamping lubricant suitable for conditions leading up to thermal treatment processes would be taken into consideration.

Solvent and Water-based Effluents

- Solvents would be carefully managed to prevent spills and fugitive emissions
- Less hazardous degreasing agents (e.g. petroleum solvents, vegetable cleaning agents, VCA, supercritical CO2 or alkali washes) would be considered, in addition to the use of counter current solvent cleaning (two-stage: first cleaning with dirty solvent, followed by fresh solvent); Aqueous non-VOC-containing alkali washes would be used for metal cleaning

whenever possible. Some of these can be regenerated by microfiltration

- Spent-degreasing solvents would be recycled on site, reusing batch stills and waste solvents
- Cold cleaning with recycled mineral spirits would be implemented before final vapour degreasing
- Acids in wastewaters would be recovered through evaporation;
- Rinse contamination would be reduced via drag-out by optimization of part operation, using surfactants and other wetting agents;
- Mechanical cleaning techniques would be used instead of chemicals where possible (e.g. a vibrating abrasion apparatus for brass rather than acid pickling; mechanical scraping instead of acid solution to remove oxides of titanium; and rotating brush machines with pumice to clean copper sheets);
- Concentrations of dissolved metal ions would be controlled and reduced (e.g. molybdenum concentration reduction through reverse osmosis / precipitation systems; use of nonchromate solutions for alkaline etch cleaning of wrought aluminium; use of sulphuric acid / hydrogen peroxide dip instead of cyanide and chromic acid dip for copper- bright dipping process)
- Acid or alkaline pickling solutions would be replaced, if possible, with alternative cleaning agents (e.g. use of caustic wire cleaner with biodegradable detergent and use of linear alcohols instead of sulphuric acid to pickle copper wire, provided that adequate safety and fire prevention is implemented)
- Flow restrictors / control meters would be installed and a foot pump (or photo sensor for automatic lines) would be used to activate rinse
- Process wastewaters would be treated and recycled, using ion exchange, reverse osmosis, electrolysis, and electro dialysis with ion exchange.
- Surface Treatment / Finishing Wastewater:
 - Strong agents and toxic surfactants would be substituted by less hazardous alternatives;
 - Anodizing and alkaline silking baths would be regenerated by recuperation of metallic (e.g. aluminium) salts through use of hydrolysis of sodium aluminate;
 - Stocks of finishing material would be limited with short shelf lives;
 - Painting jobs (light to dark) and the selection of spraying techniques would minimize wastewater production (e.g. use of a spray gun for particular applications, use of an electrostatic finishing system instead of conventional air spray);
 - The use of chlorinated solvents would be avoided and substituted (including carbon tetrachloride, methylene chloride, 1,1,1- trichloroethane, and perchloroethylene) with non-toxic or less toxic solvents as cleaning agents;
 - Chromic acid and trisodium phosphate would be substituted by less toxic and non-fuming cleaners (e.g. sulphuric acid and hydrogen peroxide), and cyanide cleaners would be

substituted by ammonia;

- Less toxic bath components would be used (e.g. zinc in place of cadmium in alkaline / saline solutions; nitric or hydrochloric acids in place of cyanide in certain plating baths; zinc chloride in place of zinc cyanide);
- Drain boards, drip guards, drip bars, and dedicated drag out tanks would be installed, after process baths.

Metals in Wastewater:

- The management of water consumption is crucial, as it also reduces the usage of raw materials and their loss to the environment. Good process control and drag-out reduction are key factors to reduce the consumption of hazardous raw materials;
- Wastewaters with recoverable metals would be separated from other wastewater streams. Metals would be recovered from solution (e.g. using electrolytic cells or hydroxide precipitation);
- Used metal pickling baths would be sent to a continuous electrolysis process for regeneration and metal recovery;
- Metals from bright dipping solutions would be recovered using suitable processes (e.g. ion exchange system for copper, or segregating phosphates from treatment of aluminium based alloys);
- Solutions containing cyanide salts (e.g. for hardening processes) would be replaced with solutions using a fluidized bath of nitrogen and corundum;
- Hexavalent chromium would be substituted for plating. If this is not possible closed loops and covered vats would serve to minimize emissions.
- Process Wastewater Treatment: Since general manufacturing operations, including metals, plastics and rubber products use a myriad of raw materials, chemicals and processes, wastewater treatment will require the use of unit operations specific to the manufacturing process in use. Techniques for treating industrial process wastewater in this sector include source segregation and pre-treatment of concentrated wastewater streams. Typical wastewater treatment steps include:
 - Greasing of traps, skimmers, dissolved air floatation or oil water separators for separation of oils and floatable solids
 - Filtration for separation of filterable solids
 - Flow and load equalization
 - Sedimentation for suspended solids reduction using clarifiers
 - Biological treatment, typically aerobic treatment, for reduction of soluble organic matter (BOD)
 - Biological nutrient removal for reduction in nitrogen and phosphorus
 - Chlorination of effluent when disinfection is required

• Dewatering and disposal of residuals in designated hazardous waste landfills.

15.1.3 Waste water management

Wastewater management would include water conservation, wastewater treatment, storm water management, and wastewater and water quality monitoring.

Industrial Wastewater: Industrial wastewater generated from industrial operations includes process wastewater, wastewater from utility operations, runoff from process and materials staging areas, and miscellaneous activities including wastewater from laboratories, equipment maintenance shops, etc.

Process Wastewater: Adequate treatment technology will be used to achieve the desired discharge quality and to maintain consistent compliance with regulatory requirements. The design and operation of the selected wastewater treatment technologies will be done to avoid uncontrolled air emissions of volatile chemicals from wastewaters. Residuals from industrial wastewater treatment operations will be disposed in compliance with local regulatory requirements or will be consistent with protection of public health and safety, and conservation and long term sustainability of water and land resources.

- Wastewater from Utilities Operations: Utility operations such as cooling towers and demineralization systems in the TC may result in high rates of water consumption, as well as the potential release of high temperature water containing high dissolved solids, residues of biocides, residues of other cooling system anti-fouling agents, etc. Water management strategies for utility operations will be used which include:
 - Adoption of water conservation opportunities for facility cooling systems
 - Use of heat recovery methods (also energy efficiency improvements) or other cooling methods to reduce the temperature of heated water prior to discharge to ensure the discharge water temperature does not result in an increase greater than 3°C of ambient temperature at the edge of a scientifically established mixing zone which takes into account ambient water quality, receiving water use, potential receptors and assimilative capacity among other considerations;
 - Minimize use of antifouling and corrosion inhibiting chemicals to ensure appropriate depth of water intake and use of screens. Least hazardous alternatives would be used with regards to toxicity, biodegradability, bioavailability, and bioaccumulation potential. Dose applied would accord with local regulatory requirements and manufacturer recommendations;
 - Testing for residual biocides and other pollutants of concern would be conducted to determine the need for dose adjustments or treatment of cooling water prior to discharge.

- Storm Water Management: Storm water includes any surface runoff and flows resulting from precipitation, drainage or other sources. Typically, storm water runoff contains suspended sediments, metals, petroleum hydrocarbons, Polycyclic Aromatic Hydrocarbons (PAHs), coliform, etc. Rapid runoff, even of uncontaminated storm water, also degrades the quality of the receiving water by eroding streambeds and banks. In order to reduce the need for storm water treatment, the following principles would be applied:
 - Storm water would be separated from process and sanitary wastewater streams in order to reduce the volume of wastewater to be treated prior to discharge
 - Surface runoff from process areas or potential sources of contamination would be prevented
 - Where this approach is not practical, runoff from process and storage areas would be segregated from potentially less contaminated runoff
 - Runoff from areas without potential sources of contamination would be minimized (e.g. by minimizing the area of impermeable surfaces) and the peak discharge rate would be reduced (e.g. by using vegetated swales and retention ponds)
 - Where storm water treatment is deemed necessary to protect the quality of receiving water bodies, priority would be given to manage and treat the first flush of storm water runoff where the majority of potential contaminants tend to be present;
 - When water quality criteria allows, storm water would be managed as a resource, either for groundwater recharge or for meeting water needs at the facility;
 - Oil water separators and grease traps would be installed and maintained as appropriate at refuelling facilities, workshops, parking areas, fuel storage and containment areas.
 - Sludge from storm water catchments or collection and treatment systems will contain elevated levels of pollutants and would be disposed in compliance with local regulatory requirements, in the absence of which disposal has to be consistent with protection of public health and safety, and conservation and long term sustainability of water and land resources.
- Sanitary Wastewater: Sanitary wastewater from industrial facilities includes effluents from domestic sewage, food service, and laundry facilities serving site employees. Miscellaneous wastewater from laboratories, medical infirmaries, and water softening etc. can also be discharged to the sanitary wastewater treatment system. Sanitary wastewater management strategies will be used which include:
 - Segregation of wastewater streams to ensure compatibility with selected treatment option (e.g. septic system which can only accept domestic sewage)
 - Segregation and pre-treatment of oil and grease containing effluents (e.g. use of a grease trap) prior to discharge into sewer systems

- If sewage from the industrial facility is to be discharged to surface water, treatment to meet national or local standards for sanitary wastewater discharges or, in their absence, the indicative guideline values applicable to sanitary wastewater would be met
- If sewage from the industrial facility is to be discharged to either a septic system, or where land is used as part of the treatment system, treatment to meet applicable national or local standards for sanitary wastewater discharges will be done.
- Sludge from sanitary wastewater treatment systems would be disposed in compliance with local regulatory requirements, in the absence of which disposal has to be consistent with protection of public health and safety, and conservation and long term sustainability of water and land resources.

15.1.4 Solid waste management

The TC will establish waste management priorities at the outset of activities based on the understanding of potential Environmental, Health, and Safety (EHS) risks and impact and considering waste generation and its consequences. The TC will do the following with respect to the same;

- Establish a waste management hierarchy that considers prevention, reduction, reuse, recovery, recycling, removal and finally disposal of wastes.
- > Avoid or minimize the generation of waste materials, as far as practicable
- Minimize, recover and reuse waste where waste generation cannot be avoided
- Treat, destroy and dispose waste in an environmentally sound manner where waste cannot be recovered or reused

The manufacturing and related operations (e.g. wastewater treatments or fume reduction) will generate solid waste at the TC. Its management measures will include:

- > Separating metal dust or scrap by type to promote recovery and recycling
- Reducing and treating slags from welding, forging, machining, and mechanical finishing, which may contain metal ions
- Proper management of metals removed from wastewaters for recovery or disposal; disposal of sludge from surface finishing processes (e.g. galvanizing, painting, hot dip)
- If reuse or recycling is not possible, the waste would be disposed of according to industrial waste management recommendations in the General EHS Guidelines

15.2 Occupational health and safety

The TC is proposed to implement all reasonable precautions to protect the health and safety of employees and students as per the World Bank norms. Although the focus will be placed during the operation of TC, much of the occupational health and safety guidance will also be followed during the construction and decommissioning activities. Preventive and protective measures will be introduced according to the following order of priority:

- Eliminating the hazard by removing the activity from the work process e.g. substitution with less hazardous chemicals, using different manufacturing processes, etc.
- Controlling the hazard at its source through use of engineering controls e.g. local exhaust ventilation, isolation rooms, machine guarding, acoustic insulating, etc.
- Minimizing the hazard through design of safe work systems and administrative or institutional control measures e.g. job rotation, training safe work procedures, lock-out and tag-out, workplace monitoring, limiting exposure or work duration, etc.
- Providing appropriate personal protective equipment (PPE) in conjunction with training, use, and maintenance of the PPE.

The application of prevention and control measures to occupational hazards will be done based on comprehensive job safety or job hazard analyses. The results of these analyses should be prioritized as part of an action plan based on the likelihood and severity of the consequence of exposure to the identified hazards. The general EHS guidelines: occupational health and safety will be followed with respect to the following;

- General facility design and operation
 - Integrity of workplace structures
 - Severe weather and facility shutdown
 - Workspace and exit
 - Fire precautions
 - Lavatories and showers
 - Potable water supply
 - Clean eating area
 - Lighting
 - Safe access
 - First aid
 - Air supply
 - Work environment temperature
- Communication and training
 - OHS Training

- Visitor Orientation
- New Task Employee and Contractor Training
- Labelling of Equipment
- Area Signage
- Communicate Hazard Codes
- Physical Hazards
 - Rotating and Moving Equipment
 - Noise
 - Vibration
 - Electrical
 - Eye Hazards
 - Welding / Hot Work
 - Industrial Vehicle Driving and Site Traffic
 - Working Environment Temperature
 - Ergonomics, Repetitive Motion, Manual Handling
 - Working at Heights
- Chemical Hazards
 - Air quality
 - Fire and explosions
 - Corrosive, oxidizing, and reactive chemicals
 - Asbestos Containing Materials (ACM)
- Biological and radiological hazards: Biological agents represent potential for illness or injury due to single acute exposure or chronic repetitive exposure. Radiation exposure can lead to potential discomfort, injury or serious illness to workers. Appropriate strategies as per the guideline will be taken for Prevention and control of such hazards.
- Personal protective equipment (PPE) to provide additional protection to workers exposed to workplace hazards in conjunction with other facility controls and safety systems.

15.2.1 Monitoring

Occupational health and safety monitoring programs would be undertaken to verify the effectiveness of prevention and control strategies. The selected indicators should be representative of the most significant occupational, health, and safety hazards, and the implementation of prevention and control strategies. The monitoring program would include;

Safety inspection, testing and calibration

- Surveillance of the working environment
- Surveillance of workers health
- Training

15.2.2 Monitoring accidents and diseases monitoring

The TC will,

- establish procedures and systems for reporting and recording
 - Occupational accidents and diseases
 - Dangerous occurrences and incidents
- > enable and encourage employees to report management all
 - Occupational injuries and near misses
 - Suspected cases of occupational disease
 - Dangerous occurrences and incidents
- Investigate of all reported incidences with the assistance of a person knowledgeable/ competent in occupational safety

15.3 Addressing potential EHS issues

The key possible issues with respect to Environment, Health and Safety (EHS) for establishment of the new TC at Bhiwadi during the construction phase, operation and maintenance phase and tool manufacturing are as follows;

15.3.1 Construction phase

The activities and anticipated EHS issues during the construction phase are highlighted in the following sections:

Activity	Associated impact	Recommendation for mitigation
Clearing of land (before initiating the	Soil erosion	► It would be ensured that the construction activity immediately follows the clearing of land to
construction work, clearing of the		avoid soil erosion.
shrubs and bushes shall be carried		
out)		
Excavation, drilling and levelling for	Air pollution	Water sprinkling at regular intervals during excavation and drilling activities would be
the construction of foundation and		practiced to avoid generation of dust.
base of building and roads		The excavated soil would not be stored in the direction of the wind and covers to be provided
		for loose construction material.
		Activities like digging and filling will be avoided in conditions of very high wind.
		Construction machinery will be properly maintained to minimize exhaust emissions of CO.
		SPM and Hydrocarbons.
	Soil erosion/	Effort would be made to use the overburden within premises for landscaping.
	Loss of Top	During levelling, gradation across the land (If any) would be reduced to the extent possible.
	soil	
	Noise	Regular maintenance of plant equipment will be carried out.
	pollution	Noise prone activities will be undertaken during day time and shall be avoided, to the extent
		possible, during night time.
		Personal protective equipment will be provided for workers performing drilling at site.

Table 61: Activities and anticipated EHS issues during construction phase

Activity	Associated impact	Recommendation for mitigation
	Occupational	Provision of adequate personal protective equipment like safety helmets, face masks, safety
	health	shoes, safety goggles etc. for the safety of workers.
	hazards	The excavated area would be provided with a visible boundary (Usually created using a tape
		and sticks) to ensure safety at site.
		Training will be imparted to workers on occupational safety and technical aspects of job
		undertaken by them.
	Disposal of	The waste and debris would be disposed of at an identified place preferably wasteland and
	debris and	appropriate approval should be taken for the same from land owner or revenue authorities.
	other wastes	The disposal site would be at least 1000 meters away from the areas including notified forest
		land, water bodies and productive lands.
Establishing labour camp (Provision	Health Risks	Provision of separate mobile toilet facilities for men and women will be made.
of civic amenities for construction		The domestic effluent will be properly disposed of in soak pits.
labour and movement of truck drivers		Contractor will provide garbage bins to all workers' accommodation for dumping wastes
for transporting construction		regularly in a hygienic manner in the area.
material shall be provided at the site.		First aid box would be provided at every construction campsite and under the charge of a
The labour camps at the project site		qualified person to provide first aid. Availability of such person should be ensured at all time.
will be temporary in nature)		The first aid box would contain the following in case of less than 50 workers at the site;
		i) Twelve small sterilized dressings.
		ii) Six medium size sterilized dressings.
		iii) Six large size sterilized dressings.
		iv) Six large size sterilized burn dressings.
		v) Six (1/2 oz.) packets sterilized cotton wool.

Activity	Associated impact	Recommendation for mitigation
		vi) One (2 oz.) bottle containing a 2 per cent alcoholic solution of iodine.
		vii) One (2 oz.) bottle containing sal-volatile having the dose and mode of administration
		indicated on the label.
		viii) One roll of adhesive plaster.
		ix) One snake-bite lancet.
		x) One (1 oz) bottle of potassium permanganate crystals.
		xi) One pair of scissors.
		xii) One copy of the first-aid leaflet approved by the Chief Inspector of Factories.
	Chances of	Awareness programmes will be conducted regularly for workers on AIDS, and other health
	spread of	related issues.
	sexually	Health check-up facilities for employees and contract workers.
	transmittable	
	diseases like	
	AIDS	
	Water	Separate mobile toilet facilities will be made available for male and female workers. The
	pollution	domestic effluent will be properly disposed of in soak pits.
		Adequate drinking water facilities, sanitary facilities and drainage in the temporary sheds of
		the construction workers would be provided to avoid the surface water pollution.
	Land	Basic sanitary facilities will be provided for the workers staying at the labour camp and at the
	contamination	project site.
		Dustbins will be provided at the camp by the contractor.
Movement of vehicles (Vehicle	Air pollution	All the vehicles entering the site will be asked to have updated PUC (Pollution under control)

Activity	Associated impact	Recommendation for mitigation
movement shall prevail at the site to		certificate.
transfer the material and workers at		Vehicle speed will be restricted to 15km/hour at site.
site. Apart from this, third party		Trucks/dumpers will be covered by tarpaulin sheets during off site transportation of friable
vehicles delivering the material and		construction materials and spoil.
equipment shall also be there.)		Maintenance of vehicles will be carried out regularly.
		Sprinkling of water will be practiced at the site.
	Soil	Proper maintenance of vehicle will be carried out to avoid any leakage of oil or grease.
	contamination	
	Water	Proper maintenance of vehicle will be carried out to avoid any leakage of oil or grease.
	contamination	
	Safety risks	Vehicle speed will be restricted to 15km/hour at site.
		Necessary safety trainings will be provided to the drivers of construction vehicles for speed
		restrictions and dos' and don'ts will be followed during movement of construction vehicles.
Use of D.G set (D.G sets shall be used	Air pollution	D.G will be optimally used with proper orientation and adequate stack height.
at site to provide electricity to labour		Stack monitoring will be carried out on regular basis.
camps in the night time. Also, in case		Proper maintenance of the DG will be carried out on regular basis.
of non-availability of power from	Noise	Acoustic enclosures will be provided with the D.G sets to minimize the noise levels.
grid, D.G sets shall be used to	pollution	
provide electricity at the site for		
construction activity)		
Storage of diesel (Diesel shall be	Soil	A covered area will be defined for storage of HSD with concrete flooring
stored on-site so as to ensure	contamination	

Activity	Associated impact	Recommendation for mitigation
availability for D.G sets)	Safety risks	The diesel storage area will not be in proximity of the labour camps.
		Inflammable substance will not be allowed at the project site.
Handling of waste (During	Land	Waste will be stored at designated place after segregation on the basis of category
construction phase there may be	contamination	(hazardous and non-hazardous).
generation of both hazardous and	and Water	Hazardous waste will be disposed of to the authorized vendors only.
non-hazardous waste which needs to	contamination	A waste management plan will be chalked out to properly dispose the debris generated from
be carefully handled to ensure		the site.
environment safeguard)	Safety risks	Adequate PPE's will be identified and provided to the workers at site.
Installation and operation of concrete	Noise	Noise shielding will be used where practicable and fixed noise sources will be acoustically
mix plants and batching plants (In	pollution	treated for example with silencers, acoustic louvers and enclosures.
case, these are installed on		Provision of make shift noise barriers near high noise generating equipment will be made to
temporary basis at the project site)		minimize horizontal propagation of noise in case of residential area in the vicinity.
Construction labour management	Child labour	Provision of clause in contractor's agreement will be made that bans child labour and forced
	and forced	labour at project site.
	labour	Adequate procedures to avoid or prevent hiring/entry of child labour at the project site will
		be undertaken;
		Random check will be undertaken at the site.
	Health and	Temporary crèche facility will be provided in case of migrant labourers children residing in
	safety risks	the camps to ensure safety.
	for children of	
	workers	
	Water	Emphasis will be given on optimization of water usage and supply of potable drinking water

Activity	Associated impact	Recommendation for mitigation
	wastage	for labour camps.
	Pressure on	Fuel will be made available to construction workers so as to reduce pressure on forest
	forest produce	produce or local fuel wood resources.

15.3.2 Operation and maintenance

There are a number of environment aspects and health and safety hazards which may arise during operations and due to negligence towards appropriate maintenance work in a TC. A snapshot of potential aspects and hazards are as follows:

Potential impact	Recommendation for mitigation
Deterioration of	Maintenance and repair work would be carried out on regular basis to slow down/mitigate the deterioration of the structure.
the structure over	A structural stability certificate would be taken from a chartered engineer every 5 years.
the period of time	Any change in the layout of the equipment, bringing heavier machinery in place of a small one or putting more number of
	machinery in a particular place, would be approved by the chartered engineer to ensure that the modification in layout is not
	going to impact the stability of the structure.
Water	Cleaning of the terrace of the building would be practiced so as to ensure that the rain water collected through water harvesting
contamination	is not contaminated. Alternatively, first rain harvest would be washed through the storm water drain in case of rain abundant
	area.
Fire risk	Fire extinguishers will be checked for pressure on annual basis.
	Fire hydrant system would be checked once in six months to ensure it is operational.
	Electrical wiring in the premises would be regularly checked and repair should be undertaken wherever required.

Table 62: Potential hazards during O & M phase

15.3.3 Manufacturing

Table 63: Potential hazards during manufacturing phase

Activity	Associated impact	Recommendation for mitigation
Hand tool manufacturing		
Hammering during forging	Noise	Ear plugs/muffs would be provided to the employees and students working in the hammering
process	pollution and	process.
	hear loss over	Level of noise would be monitored on regular basis so as to ensure that the noise level is within
	longer period	specified limits.
	of time	Hammering would not be carried out during night time.
		Regular audiometric test of employees would be carried out in order to understand if any person
		is susceptible to hearing loss and in case such situation is encountered the person would be
		shifted to other department and provided with medical facility.
	High	Monitoring of the vibration will be conducted on regular basis.
	vibrations	
Heat treatment	Air pollution	Ventilation would be provided in work shop to avoid concentration of the fumes.
	Burn injury	Employees would be provided with Apron while working in the workshop.
		Workplace safety training will be provided on regular basis.
		Eye wash and shower facility would be provided in the facility.
		Appropriate PPE including, gloves, safety shoes, goggles, etc. would be provided to employees
		and the students.
	Heat stress	Heat stress monitoring of the employees will be conducted once a year to ensure safe and
		appropriate working conditions.
Non-maintenance of clean	Injury due to	Cleaning schedule will be developed for the site.

Activity	Associated impact	Recommendation for mitigation
premises	trips	Proper demarcation of the storage area for waste material will be done according to the different
		type of waste material.
Handling of waste (Hazardous	Land	Waste will be stored at designated place after segregation on the basis of category (hazardous
and non-hazardous waste	contamination	and non-hazardous).
generated during day to day	and Water	Hazardous waste will be disposed of to the authorized vendors only.
operations to be carefully	contamination	A waste management plan will be chalked out to properly dispose the debris generated from the
handled to ensure environment		site.
safeguard)	Safety risks	Adequate PPE's will be identified and provided to the workers at site.
Use of D.G set (D.G sets shall be	Air pollution	D.G set will be optimally used with proper orientation and adequate stack height.
used at site to provide electricity		Stack monitoring to be carried out on regular basis.
in case of power failure)		Proper maintenance of the D.G set to be carried out on regular basis.
	Noise	Acoustic enclosures will be provided with the D.G sets to minimize the noise levels.
	pollution	
Storage of diesel (Diesel shall be	Soil	A covered area will be defined for storage of HSD with concrete flooring.
stored on-site so as to ensure	contamination	
availability for D.G sets)	Safety risks	Inflammable substance will not be allowed in the premises.
Specialised Tool manufacturing		
Designing of components	Depletion of	Paper would be recycled for rough work.
	natural	
	resource	
	(paper)	
Machining activities	Land	SOP would be formulated for handling and storage of waste oil and coolant.

Activity	Associated impact	Recommendation for mitigation
	contamination	A designated area would be identified to store these wastes under the shed.
	due to waste	The hazardous waste will be disposed of to an authorised recycler and shall not be used internally
	oil and waste	for any purpose until prior permission is sought from SPCB.
	coolant	
	Water	
	contamination	
	due to waste	
	oil and waste	
	coolant	
	Noise	Ear muffs / Ear plugs will be provided to officials working on these activities.
	pollution due	
	to pressing	
	and shearing	
	activities	
	Land	The metal scrap would be collected appropriately and stored in a designated area before being
	contamination	disposed of/sold to a third party.
	due to metal	
	scrap	
	Cut/injury due	
	to metal scrap	
	lying	
	unmanaged	

Activity	Associated impact	Recommendation for mitigation			
Use of D.G sets Noise		Acoustic enclosures would be provided to avoid noise pollution.			
	pollution				
	Land	Diesel would be poured in D.G set using funnel.			
	contamination	Concrete flooring would be made near the D.G set.			
	Air pollution	Chimney with appropriate height would be provided to minimize air pollution and compliance with			
		the legislation.			
Storage of hazardous waste like	Land and	The storage area of the hazardous waste will be cemented in order to avoid land contamination.			
empty printer cartage, waste	water	Proper demarcation of storage area for hazardous waste will be done to avoid chances of spill			
coolant, oil soaked cotton waste,	contamination	over during handling.			
etc.	due to leakage	All the waste will be stored under a shed so as to avoid contamination and washing away of waste			
	and/or spill	in nearby water stream or ground water in case of rain			
	over				
	Water	All the waste will be stored under a shed so as to avoid contamination and washing away of waste			
	contamination	in nearby water stream or ground water in case of rain.			
	due to leakage				
	and/or spill				
	over				

The protection of public health, safety and general welfare will also be ensured through adherence to the building codes since these are related to the construction and occupancy of buildings and structures.

15.4 Provisioning of site services

The following section outlines the details of the essential measures to be designed as per regulatory requirements relating to maintenance such as;

- Fire alarm and firefighting system,
- Rain water harvesting,
- Water treatment and sewage treatment,
- Ventilation system.

15.4.1 Fire alarm and firefighting system

a) Fire alarm system

- Automatic Fire alarm system will be provided in all buildings of the campus excluding student hostels and emergency staff quarters.
- The system will have appropriate provisioning of smoke detectors and beam detectors with respect to the sensitivity and probability of fire.
- Fire alarm panels will be provided at appropriate locations with easy and convenient accessibility for manual activation of alarm in case failure of automatic system.
- A control panel will be provided at control station with a repeater panel in security cabin to activate, deactivate and reset the fire alarm system.
- The instrumentation, panels, sensors and equipment used will be of certified make confirming to relevant standards.
- Smoke detectors and beam detectors will be installed above and below false ceiling as applicable.
- b) Firefighting system overview
 - Firefighting system comprising of sprinklers, yard hydrants and pumping station will be provided.
 - Sprinklers system will be provided in the production area (above and below the false ceiling), training block, administrative building (all floors) and other buildings etc.
 - Yard/ field hydrant system will be provided throughout campus with hydrant posts at appropriate locations having operating valve and hose reel provided in hose reel boxes as per standards.

- Staircases in all buildings will be provided with wet risers.
- The piping network will have suitable size/ diameter MS pipes welded at joints or connected with socket and threaded joints as per the regulations.
- > All pipes will be painted in red colour as per the standards.
- The hydrant and sprinkler system will be connected to piping network and will be continuously charged with water at appropriate pressure as per applicable standards.
- All equipment and items used in firefighting system will conform to relevant codes of practice, standards, rules and regulations applicable.
- Fire water tank of minimum 2000 Cum capacity/ one hour supply will be provided.
- The tank will be placed overhead/ above ground so that the pumps operate in negative suction and with required level of water even when they are off.
- c) Pump room
 - The pumping station will be located near the fire water tank to store adequate volume of water for firefighting as per rules and regulations set by local fire authority and guidelines by NBC.
 - Both the sprinkler system and hydrant system will be fed with common electrically driven pump, backed with a diesel engine driven pump of adequate capacity to maintain required pressure in the pipe line.
 - Electrically driven jockey pump of adequate capacity will be provided in the pumping station, which will be positioned and programmed in such a way that jokey pump starts first in case there is any loss of pressure in the fire pipe line.
 - The pumps will be automatically operated and control panels with required switchgear, logic will be provided to control the pumps.
 - > Necessary arrangements for power supply will be done for the fire pumps.
 - The power and control cables used for fire pumps will be fire rated and conforming to relevant applicable standards.
 - The pumps will be placed on adequate foundations/ pedestals with adequate support to the piping.
 - > The pump room will be covered with canopy roof in steel structure and pre-coated sheets.
 - > All electrical fittings and accessories in pump room will be of weatherproof category IP55.
- d) Sprinkler system
 - The sprinkler pendants/ heads provided will be of appropriate category as per the hazard category and water required to extinguish fire. This will be governed by appropriate design standards and regulations of local fire authority.
 - > At least one test sprinkler will be provided in each area for periodic testing of the system.

- > The density of sprinklers will be as per applicable regulations.
- e) Hydrant system
 - The hydrant system will comprise of ring main and other circuits around all buildings in the campus, thus making it possible to reach to any corner in case of fire.
 - > Hydrant system will have hydrant posts at appropriate locations.
 - The hydrant post will have hose reel box with hose reel of appropriate length with nozzle as per applicable regulations.
 - > The hydrant posts and the hose reels will be easily accessible.
 - Appropriate valves will be provided on the hydrant posts to operate the hydrant and connect hose reel whenever required.
 - Sufficient valves will be provided in each loop of the hydrant system to enable maintenance of any portion of line without draining the firefighting system and releasing pressure in remaining portion.
 - 4 way valves will be provided at appropriate places allowing connection with external fire tenders mounted on truck.
 - Wet risers will be provided in every staircase of each building with suitable reel drum having rubber hose of adequate length fit with suitable nozzles.
 - The hydrant network pipes will be placed above ground and only the crossings will be underground wherever required.
- f) Fire water tank
 - > Water tank with adequate capacity will be provided to store water for firefighting purpose.
 - Arrangement will be done in such a way that the water sourced will first be filled in the primary fire water tank and the excess overflow from this tank will be put in to domestic and other water tanks.
 - The tank will be site assembled with FRP or other panels using appropriate technology and will be placed above ground.

15.4.2 Rain water harvesting

- The campus will be divided in to 4 or 5 areas and the storm water from the roof top of each building in each area will be collected in the specified area.
- The storm water outlets on building roofs will be checked for adequacy with respect to size considering maximum rainfall intensity in past 100 years.
- Additional outlets will be provided to the building roof, in case the existing outlets are found to be insufficient.

- The outlets will be provided with vertical down take pipes, which will be connected to the existing underground storm water lines through nearby chambers.
- Suitable locations for ground water recharge pit will be identified in each area as mentioned above.
- Considering geology, ground water tables, applicable rules and regulations and available space, ground water recharge pits with bore holes and pipes will be designed with adequate capacity.
- The ground water recharge pits will be connected to the storm water line through nearest chamber to fetch storm water (collected on roof) to the pit.
- Overflow will be provided to the ground water recharge pit at suitable level, to take off excess water back to the storm water network and discharge off.
- The ground water recharge pits will be protected with fence around to prevent ingress of people, animals etc.
- Suitable provision will be made to cut off and on the flow to the ground water recharge pits.

15.4.3 Water treatment plant

- Water treatment plant with 2 types of treatment will be provided on campus;
 - Water softening (1,50,000 ltrs/Day).
 - Water purification with suitable RO and UV (25,000 Ltrs/Day).
- The water treated with softening plant will be used for general domestic purpose except for drinking.
- The drinking water will be treated using water purification plant with RO and UV technology.
- Adequate piping network conforming to applicable rules, regulations and standards will be provided for supply of drinking water at various locations within the facility.
- The softened water will be supplied through existing water supply network to various locations in the premises.
- The existing water supply network will be inspected for leakages, damages for appropriate repairing.
- The equipment provided for water treatment will be standard and approved/ certified by appropriate government bodies certifying such equipment.
- Arrangements for power connection including laying cables and necessary switch gears at both ends at main supply point and machine point will be provided.
- Adequate drainage will be provided for regeneration of both treatment plants, while connecting the same to primary and secondary effluent treatment.

15.4.4 Sewage treatment plant

- Sewage Treatment plant with integral effluent treatment will be provided for primary and secondary treatment with capacity of 60 Cum/day.
- The primary treatment will be through the use of septic tanks of adequate capacity, located at various places near the toilet blocks on campus.
- The septic tanks will have adequate manholes for cleaning and maintenance purpose and will also have gas vents rising above the highest level of the buildings to avoid foul smell.
- Overflow outlets of the septic tanks will be connected to secondary treatment achieved through properly designed constructed wet land system with sub-surface flow.
- The constructed wetland will consist of locally available species of wetland trees, bushes and shrubs.
- Collection tank of adequate capacity will be provided on the upstream of the constructed wetland to take care of incidental heavy flows.
- The constructed wetland will be located suitably in the premises allowing adequate sunlight for growth of plants throughout the day.
- Provision will be made to allow rejection and regeneration discharge from water treatment plant by dissolving high TDS water suitably.
- Necessary de-odouring and chemical dosing will be provided at the end of wetland before the water obtained is reused.
- All equipment used and the design, arrangement will be in compliance with applicable rules and regulations as laid down by town planning authority, central pollution control board and other local authorities.

15.4.5 Ventilation system

- a) Internal buildings
 - The TC premises will have provision for sufficient ventilation. This will be done keeping in view the amount of space in the TC, number of people expected to occupy the space, type and amount of machines/equipment, and overall size of the space. The designing will be done keeping in view proper distribution of air for ventilation throughout all occupied spaces across the TC.
 - Natural ventilation The premises will have adequate openings, such as doors, windows and/or vent opening to clean environment. Roof vents would be placed wherever applicable to reduce the reliance on air conditioning systems and also reduce CO2 emission in the building.
 - Mechanical ventilation Mechanical parts would be installed to provide air to building occupants at a comfortable temperature and humidity that would be free of harmful concentrations of air pollutants.

- Provision for adequate supply of outdoor air in the indoor environment will be provided to dilute pollutants released by equipment, building materials, furnishings, products, and people. The building's ventilation system will be properly installed with filters to trap such particles.
- > Air input, smoke exhaust will also be installed and maintained for proper ventilation.
- Hybrid ventilation systems are popular in industrial buildings which predominantly use natural ventilation along with mechanically driven fans to improve predictability of performance over a wider range of weather conditions. Provisioning of the same will be taken into account wherever applicable during designing the ventilation system.
- b) Manufacturing/ Production area
 - > The production area will be provided with central air conditioning.
 - Air quality in production area will be checked for vital parameters such as concentration of CO2, CO and other relevant gases during operations.
 - In case the parameters above are not acceptable as per relevant standards, adequate capacity fresh air system will be designed and provided for production area to improve quality of air.
 - The fresh air supply system will consist of an external air handling unit of adequate capacity with suitable grade filters on inlet side.
 - The outlet of the air handling unit will be connected with duct system supplying air inside the production area at various places.
 - > The fresh air will be discharged in the production area by providing suitable diffusers.

c) UPS room

- > Appropriately designed ventilation system will be provided to the UPS room.
- The ventilation system will mainly comprise of air conditioning units providing cold air at lower temperature and exhaust system taking out hot air coming out of the UPS.
- The system will be designed to maintain adequate temperature around the UPS equipment as per manufacturer's requirements/ specifications.
- Humidity will be controlled to the desired level as directed by the UPS manufacturer by controlling inflow of fresh air.
- Proper ventilation will be provided to battery racks with adequate number of air changes as per applicable rules and regulations.

Key risks and mitigation

16. Key risks and mitigation

The key risks associated with implementation of the project along with possible mitigation measures are e summarized in this section. It must be noted that risks universe is dynamic and is likely to change periodically. It is recommended that frequent analysis is carried out and mitigation plans are drawn. Below are risks that may impact this project;

Key broad area	Risk		Mitigation		Impact on		
			Wittgation	Cost	Time	Resources	
Project Planning	Risk of inadequate planning of time, effort		Adequate time and cost buffer to be kept to				
	and resources required to complete the		deal with contingencies.	✓		\checkmark	
	project		Appointment of CMC for detail design and			·	
			project management during construction of				
			the TC				
Approvals and	Risk of delay in clearances from local		Appointment of PMC firm.				
Clearances	authorities like		Timely application of approvals for relevant				
	Plan Sanction – Town Planning Authority/		authorities by CMC				
	Local Body		Monitoring of status of Approvals.				
	Commencement Certificate – Town				1		
	Planning Authority/ Local Body				·		
	Fire NOC – Provisional and Occupancy –						
	Local Fire Authority						
	Plinth Checking Certificate – Town						
	Planning Authority/ Local Body						
	Building Completion Certificate – Town						

Table 64: Risk & mitigation

Key broad area	Risk	Mitigation	Impact on		
	NISK	Mittgation	Cost	Impa	Resources
	Planning Authority/ Local Body				
	Consent to Establish and Operate –				
	Pollution Control Board				
	MAP Approval and Factory License –				
	Directorate of Industrial Health and				
	Safety				
	Labour License – Labour Commissioner				
	Fuel Storage – Chief Controller of				
	Explosives				
	Tools, Tackles, Pressure Vessels, Hoists -				
	Competent Engineer				
	Electrical Systems – Electrical Inspector				
Environmental risk	Loss of top soil	Top soil excavated from the site should be			
		carefully handled. It should be collected			
		separately and stored as a heap which is			
		appropriately covered. The heap should not be	\checkmark		\checkmark
		put in the direction of wind to avoid dust			
		generation			
		Maximum effort should be made to utilize the			
		top soil for landscaping within the site			
	Air pollution due to digging and levelling	Water sprinkling shall be practiced	\checkmark		\checkmark
	activities	Construction machinery shall be properly			

Key broad area	Risk	Mitigation		Impact on		
	MJK	Witigation	Cost	<u> </u>	Resources	
		maintained to minimize exhaust emissions of				
		CO, SPM and Hydrocarbons				
		These activities shall be avoided in very high				
		wind and cover should be provided for loose				
		construction material				
	Water contamination and health risks	Toilet shall be earmarked for both men and				
	associated with setting labour camp for	women contractual workers				
	construction	Adequate drinking facilities shall be provided				
		at the construction site;	~		\checkmark	
		Temporary crèche facility may be provided in				
		case of migrant labourers children residing in				
		the camps to ensure safety				
	Land and water contamination due to waste	► Waste shall be stored at designated place after				
	generated at site	segregation on the basis of category			(
		(hazardous and non-hazardous)	v		v	
		Hazardous waste shall be disposed of to the				
		authorized vendors only				
	Air pollution due to use of D.G set.	D.G set to be optimally used with proper				
		orientation and adequate stack height				
		Stack monitoring carried out on regular basis				
		Proper maintenance of the DG Set should be				
		carried out on regular basis				

Key broad area	Risk		Mitigation		Impact on		
Rey bi bau ai ea	λειν		Wittgation	Cost	Impac Time ✓	Resources	
			Acoustic enclosures are to be provided with				
			the D.G sets to minimize the noise levels				
Construction	Delay in construction due to cost overrun,		Appoint a PMC for a design and build contract				
	management of building contractors.		for managing construction.				
			Strict timeline will be made and agreed with PMC.	\checkmark	\checkmark		
			Regular M&E, Built in mechanism for penalty				
			for delays and incentive for timely completion,				
			ensuring timely payment based on milestones.				
Deviation in project	Change in project scope		Clear buy in on project plan and execution				
scope	► initiated by MoMSME,		planning.	\checkmark	· ✓		
	Machinery supplier constraints		Identification of Machinery suppliers based on	v		v	
	Product discontinuation		the top current suppliers and technology				
			available.				
Maintaining World	Construction quality may not be up to the		Appointment of third party Government				
Class Construction	mark.		quality assurance agency.				
quality							
On-boarding of Key	Delay in on boarding of key project		Clearly defined scope and incentives for				
players	stakeholders		stakeholders.				
	Technology Partner		Timely contracts with the project		Ý	v	
	Construction Network Manager		stakeholders.				
	Construction Management Consultant						

Key broad area	Risk		Mitigation		Impact on		
	- TABK		Wittgation	Cost	Time	Resources	
	Quality Assurance						
Procurement of	Delay in procurement of machines and goods	►	Machines and equipment chosen should be				
machinery	due to high Lead time and time taken for		standard and popular models available in				
	clearances		market. Early release of order confirmation				
			and advance if any.		\checkmark		
			Appointment of efficient and pre-approved				
			Clearing & Handling Agency (CHA) to ensure				
			timely clearances and transportation of				
			machines.				
	Variation in Equipment required and finally	►	Neutral specifications to be drafted based on				
	procured. Too stringent specs may lead to		thorough research on TC requirements and	\checkmark	\checkmark		
	high price and low competition, loose specs		current models available.				
	may lead to low price but low quality				✓ ✓		
Trained resource	Availability of trained manpower for		Machine specific training programmes to be				
availability	operation of new machines		conducted for training of key personnel and			v	
			knowledge sharing.				
Market	Change in product mix		Expansion of product base.				
	Change in customer mix		Increase in customer base.				
	Change in technology		Develop a backup plan for retiring of obsolete				
	Change in product pricing		machines.				
	Competition from Govt./Public tool rooms						
	Lack of cluster development in the target				✓ ✓		

Key broad area	Risk	Mitigation		Impact on		
	NISK	witigation	Cost	Time	Resources	
	region					
Policy	Change in Government Policy/ Schemes for	Increase existing customer base.				
	Training	Diversify into new sectors.				
	key sectors		\checkmark		\checkmark	
	E.g. Change in Government space					
	programme, increase in imports may					
	affect orders from major clients					
Taxation	Change in service tax policy on training may	Institute should keep abreast with policy				
	adversely affect training revenue	changes and the same should be considered				
		while designing the course and fee structure.				
Human resource	Labour availability	Planning for holidays and lean periods.				
	Retention of key employees (Flight of key	Good incentive scheme and career	\checkmark		\checkmark	
	talented people can make it difficult to	development plans.				
	achieve centre's growth plans)					
Management risk	Lack of capable management to run the TC	Leadership training.			~	
		Succession planning.				
Maintenance risk/	Delay in availability of spares and service	Procure models that are likely to continue for				
spares - Availability	support at a reasonable cost	at least next 5 yrs. to ensure better	\checkmark			
of spares & services		availability of spares and services.				
Performance of key	Poor performance of Outsourced agencies	Establishment of KPIs			\checkmark	
stakeholders	like TP, CNM and PMC	Periodic review of performance. Suitable				

Key broad area	Risk	Mitigation	Impact		ct on
Rey biodd area	NISK	witigation		Time	Resources
		penalty clauses to be added in the ToRs.			
Weather	Delay in construction due to monsoon season	 Planning for lean periods and periods of low construction activity. 	\checkmark	\checkmark	

Conclusion

17. Conclusion

The TC at Bhiwadi is proposed to be a General Engineering TC with primary focus on auto sector. It will specialise in medium size sheet metal components and tools in 4 wheeler segment and small size plastic mould works in 2 wheeler segment not only in the catchment area but also outside the catchment. There is an opportunity for the TC to grow further catering to other upcoming sectors like agro processing and electronics in this region.

Going forward, revenue is proposed from consultancy / advisory streams. This includes support to MSME clusters in technology and engineering solutions and for improvement of their quality systems and productivity. The TC will make a concerted effort in reaching out to MSMEs for these works. For improvement in productivity, TC would initiate design clinics, training in lean manufacturing and project based consultancy. The TC would further put greater emphasis to equip itself to provide consultancy services to MSMEs in the field of product design and development, tool design, manufacturing and innovations in process and productivity.

TC will contribute towards skilling youth to make them employable in industry by designing courses relevant to them. The focus areas for the proposed TC are in line with objectives of the program. This will be further be complemented by the proposed innovative ideas for the TC like;

- The new TC will take steps to form consortium with MSMEs including TRs to jointly cater to the focus sectors. Once formed, the TC would further formalise and institutionalise the consortium. The TC should provide handholding/ support and special machining & testing facility to members of this consortium and prepare a road map for the next 3-5 years to ensure that these MSME can develop the required expertise and become more competitive
- The proposed TC will provide incubation support to trainees for their start-up ventures. The centre would encourage final year trainees in the long term programmes to start their own ventures by providing necessary support like finance, high end machining, availing benefits of Government schemes etc. for a period of 3 years. The TC can extend its facilities for nominal fee during this period to these start-up ventures and help them to specialise in their core activities.
- The TC will form Productivity and Quality club for cluster of engineering industry and support them for a period of 12 months in which each cluster club of about 10 MSMEs will be assigned a mentor (Sr. Engineer Production/ Design/ Training and above). The mentor will make periodic visits to the MSMEs. He will plan and handhold in the execution of the plan at the MSMEs so as to have a visible improvement at the end of 12 months period. Membership can be for a nominal fee. Quality club and Productivity club may be formed separate and the KPI of mentors will be decided based on the results achieved by MSME units.

All these initiatives of the TC would not only strengthen the expertise of MSMEs in manufacturing but also help to develop a sustainable ecosystem for MSMEs in the region in the long run. On the same line, even investments have been proposed keeping the focus area and adherence to EHS guidelines in mind.

Above all, TCSP program will enable TC to showcase the best practices not only in the adoption of new technologies and skilling the youth but also managing all the associated environmental and social aspects.

Annexure

18. Annexure

18.1 Checklist for social screening for establishment of new TCs

In RPF, particular attention will be paid to the needs of vulnerable groups among the affected especially those living Below the Poverty Line (BPL), the landless, the elderly, women and children. The Entitlement Matrix that is a part of this RPF has provisions for compensation and resettlement assistance to all Project Affected Persons as categorized above in broad terms. This Resettlement Policy Framework and its Entitlement Matrix are based on World Bank's social safeguard policy that consists of OP 4.12 – Involuntary Resettlement and OP 4.10 – Indigenous Peoples and also Government of India's The Right to Fair Compensation and Transparency in Land Acquisition, Rehabilitation and Resettlement Act, (RFCTLAR&R Act) 2013.

- The World Bank's Social Safeguard Policy consists of OP 4-12 Involuntary Resettlement and OP 4.10 – Indigenous Peoples. The OP on Involuntary Resettlement has clearly stated policy objectives, impact covered, mitigation measures and eligibility criteria. It also has guidelines for preparing Resettlement Policy Framework and this RPF is in accordance with these guidelines.
- As far as OP 4.10 Indigenous people are concerned; it uses the term Indigenous people in a generic sense to refer to a distinct, vulnerable, social and cultural group possessing certain characteristics in varying. The RPF uses the term Scheduled Tribes (ST) rather than Indigenous people.
- The social screening process as set out in this document would help to determine whether or not Bank's social safeguard policy either on Involuntary Resettlement or Indigenous Peoples will be triggered.

Following is the resettlement policy framework, for social screening, which have been agreed in the initial stages and have been addressed during the site visit in Bhiwadi;

Name of Proposed Technology Centre: <u>MSME TECHNOLOGY</u> CENTRE by OFFICE OF DC MSME DEVELOPMENT Address: PUDT ND SB - B71(A) and INSTITUTE, BAIS GODAM, JAIPUI SB-872 PATHREDI INDUSTRIAL AREA, PATHREDI DISTT. ALWAR (IRAJASTHAN)

Name/Location: Existing Industrial Park/Special Economic Zone: INDUSTRIAL AREA PATHREDI DISTT. AUWAR, (RAJASTHAN)

Total Area of Land Previously Acquired Under Different Tenure Systems - Hectares

Private/Patta Land	Village Common/Gram Sabha	Van Panchayat	Revenue Land	Forest Land	Others
PRIVATE.	CHOPANKI	JODIYA	10.08 Acre	E NIL	

Patterns of Previous Land Use - Private/Patta Land: List Number of Earlier Users

NIL	NIL	NIL	IS IL
			1415

Patterns of Previous Land Use - Government Land under Different Tenure Systems

Land Tenure	NTFP	Fodder	Firewood	Residential Structures	Commercial Structures
Van Panchayat Land	-	-	_	-	
Gram Sabha Land	-		_		
Revenue Land	-		-	_	
Forest Land			-	_	
Total Number Of families	-	-	-	-	

1. 2

Total Number of Families, if any, currently Dependent On

Land Tenure	NTFP	Fodder	Firewood	Residential	Commercial	Total
Gram Sabha Land	-	-		-		-
Van Panchayat Land	-		_	-	_	
Revenue Land	_			-	_	-
Forest Land	-			_		-

Whether the land is currently available free of any encumbrances: Yes---- No-X

This is to certify that all compensation, as required, have been paid and all claims/access rights have also been settled

Signing of Social Screening

Date: 05-09-2014 Signature: Name: PRAVEEN KUMAR GUPTA Place: BHIWADI.

Designation: REGIONAL MANAGER

18.2 Checklist for environmental assessment

The output of the detailed site assessment shall provide a holistic view of the existing environment settings and the mitigation/preventive measures required to be adopted so as to minimize the EHS impact of the tool room.

Section I: General

1.	Name of the Tool Room				
	Location				
	• Block				
	District				
	• State				
2.	Rural/Urban/Semi-urban				
3.	Date of site visit (dd/mm/yyyy)				
4.	4. Details about key person/s with whom interactions took place during site visit				
	Name				
	Designation				
	E-mail id				
	Telephone Number				
	Mobile No.				

Section II - Physical Infrastructure Aspects (Land and Buildings Related)

1.	Total Campus Area (in hac.)	
2.	Number of Buildings in the Campus	
3.	Total Built-up Area (in sq. mt.)	
4.	Ownership of land	Lease/Government/Any Other
5.	Name of the department/agency in	Provide name as it reflects in revenue record.
	whose name the land is registered.	
6.	Land area as shown in revenue records	Mention area as it reflects in the revenue record.
7.	Is the total area properly demarcated/	
	protected by a boundary?	
8.	Environmental Setting	
	Topography of the site	
	Seismic Zone	
	Rainfall (average - in mm)	
	Temperature (max.) (in °C)	
	• Temperature (min.) (in °C)	

9. Land-use Zone within the Tool Room is	Indust	rial/Spe	cial Economic Zone/
located	Comm	ercial/R	Residential/Any Other
10. Land-use surrounding the Campus	Indust	rial/Spe	cial Economic Zone/
TO. Land-use surrounding the Campus	Comm	ercial/R	Residential/Any Other
11. Is there any court case/legal dispute			
related to land on-going?			
12. Is the existing Tool Center within 1 km fr	om the	followin	g?
National Park	Yes	No	If yes, provide name and distance
	105 110	details.	
Wildlife/Bird Sanctuary	Yes	No	If yes, provide name and distance
	100	110	details.
Protected/Reserved Forest	Yes	No	If yes, provide name and distance
			details.
Wetland/Lake	Yes	No	If yes, provide name and distance
	103	INO	details.
Any other environmentally	Yes	No	If yes, provide name and distance
sensitive area?	103	110	details.
13. Is the Tool Room located in a	Yes	No	If yes, name the area.
critically/notified polluted area?	103	INO	in yes, name the area.

14. Record observations on the following:

Ventilation in the	Over-all
building	Hostel
	Canteen/mess
	Toilets
	Rooms
	Workshop
	Any specific observation
Any visible structural	
distress/defect in the	
building	
Storm water drainage	
Is there any water logging	
in the campus during the	
rainy season? If yes, how	
long does it last and what	
is the reason.	

Parking	
Signage inside/outside	
the building	
Storage of materials	
Cleanliness and hygiene	
of the over-all campus	
Arrangements for the	
Physically Challenged	
Availability of open	
space/s in the campus	
Green area/ belt	
What kind of	
manure/chemical is used	
for maintaining green	
areas?	

15. Sanitation Arrangements

Number of toilets - ge	ents	
Number of toilets - la	idies	
Over-all cleanliness		
Cleaning maintenance arrangements	and	

16. Solid Waste Management

(Including wastes from canteen, office, canteen/mess, workshop and e-waste)

Waste/s generated
(By Type and Quantum)

Collection / Storage Practices	
Disposal Practices	

17. Waste Water Management

(including wastes from toilets, canteen/mess, hostel, workshop)

Waste/s generated (By Type and Quantum)	
Disposal Practices	
Is any water quality monitoring being done, particularly from wastes arising from production	
floor/workshops? If yes,	

18. First Aid and Emergency Response Arrangements

First-aid (availability and quality)	
Emergency Preparedness / Response Plan	
Fire safety arrangements (availability and quality)	
Electrical safety arrangements	
Injury/accident on the workshop/ production floor	
Type of natural disaster/s that the region is prone to	
When and what type of natural disaster has last	

struck the area?	
Mock Drills	

19. Water Usage

Source of water supply	Ground / Piped / Both / Rain water harvesting / Any Other
Is sub-project located in water scare area?	
If yes, then what is the ground water usage status?	
Is there any water body located in and around the campus? If yes, give distance.	
What is the existing water usage per month/annum in the Tool Center?	
Is any water treatment arrangement in place? If yes, give details.	
Is water quality monitoring being done? If yes, provide details.	

20. Environmentally Augmentative Measures

officioncy in the building	
efficiency in the building.	
If yes, provide the	
details.	
Is there any rain water	
harvesting arrangement?	
Has any other water	
conservation measure	
been taken? If yes,	
provide details	
Has there been any use	
of environment friendly	
building materials? If	
-	
yes, list the materials.	
Is there any current	
building or block that is	
compliant with Green	
Building norm/s?	

Section III - Technological Aspects (Trade Technology/Machinery/Equipment Related)

Type of Tool Room (Sector)	
Specific Activities that are Undertaken at the Center	
Over-view about Training Course/s Offered	
Duration of Training Course/s Offered	
Number of persons trained so far (by course)	
Type of Technology in use at the Center	

	Any Other Important Points (Affiliations/Certification/Production
Remarks	Facility and its use)

As a part of the assessment, further areas were also assessed keeping in mind the nature of business:

Resource/Raw Material use/Productivity	
What kind of raw materials are used?	
Provide production related details	
Is any specific technology being used that helps in resource conservation? If yes, provide details.	
Water Usage	
Quantum of water used	
Source of water	
Have measures been taken for water conservation/efficiency from a technological perspective?	
Energy Consumption	
Tupe of operation used	
Type of energy sources used	
Quantum of energy used	
Quantum of energy used	
Quantum of energy used Is there any renewable energy source in use?	
Quantum of energy used Is there any renewable energy source in use? Are generators is use?	
Quantum of energy used Is there any renewable energy source in use? Are generators is use? If yes, of what type Have measures been taken for energy conservation/efficiency from a technological	

If yes, of what type? Mention quantum/level by category.	
Pollution Management (air, water, soil, noise)	
Howispollutionbeingminimised/managed/mitigated?Listspecificmeasures that are being taken.	
Is there any emission/discharge of carcinogenic pollutants?	
Is there any GHG emission?	
What is the disposal mechanism/arrangement?	
Is pollution monitoring being done?	
If yes, what is the system and quality of	
What is the frequency of monitoring?	
Who manages this?	
Is there any budgetary provision for doing so?	
Is asbestos sheet used in the project site for	
How is pollution being mised/managed/ mitigated? List specific measures that are being taken.	
Occupational Health and Safety	
What are the specific occupational health and safety hazards associated with the technology in-use at the centre?	
What measures have been taken to avoid/minimise/mitigate these risks?	
Other Aspects (regulatory compliance, awareness, training etc.)	

18.3 Budgetary estimates of some machines

					Price (INR)			
Machine	Make	Model	Specification	Euro	USD	INR	@20 Escalation	
	HAAS	VF-6/40TR	1626X813X76 2		204815	1,22,88,900	1,47,46,680	
5 AXIS MILLING	HAMLEY	C60U	1200X1300X9 00	864840		7,00,52,040	8,40,62,448	
	DMG MORI	DMV 270 P	2700X2700X1 600	1684210		13,64,21,01 0	16,37,05,21 2	
	RAMBAUDY		3000x2000x1 500	12,00,00 0.00		9,72,00,000	11,66,40,00 0	
	HAAS	VM3	1016X660X63 5		117215	70,32,900	84,39,480	
3 AXIS VMC	DMG MORI	CTX450 (TURN MILL)	650X465 C AXIS	107190		86,82,390	1,04,18,868	
	DMG MORI	DMF260	2600X700X70 0	310440		2,51,45,640	3,01,74,768	
	RAMBAUDY		2500x1500x1 500	10,00,00 0.00		8,10,00,000	9,72,00,000	
	HARTFORD	HSA323	3000X2200X7 80		2,40,00 0	1,44,00,000	1,72,80,000	
	HARTFORD	HEP 2150	2250X1500X7 80		170000	1,02,00,000	1,22,40,000	
CNC LATHE	DMG MORI	CTX450 V1	650	90900		7362900	88,35,480	
	HAAS	ST-40	648X1118		157155	94,29,300	1,13,15,160	
	JOBBERS	JOBBERS JR CNC	1875X1740X1 720			47,92,15,08 0	57,50,58,09 6	
Grinder	KENT	KGS920AHD	2000X900		124275	74,56,500	89,47,800	
	KENT	KGS925AHD	2500X900		137270	82,36,200		

Machine	Make	Model	Specification	Price		Price (INR)
						98,83,440
Cylindrical Grinder	PAC	PACGRID Z3040X8/1	1000X200		850,000	10,20,000
Radial drilling machine	PAC	PACDRIL Z3040X8/1	240		450,000	5,40,000
Radial drilling machine	PAC	PACDRIL Z3050X16/1	1250		750,000	9,00,000
Injection moulding machine	PAC	ESM 60 TON SERVO SRIVE	600 TON	140000	84,00,000	1,00,80,000
UPS	AIRCOM	ht series3:3	20kva,5min 20X20 battery			2,32,920
	AIRCOM	ht series3:3	40kva,5min 12x20battery			2,32,920

18.4 Key questions asked during telephonic discussions

- 1. What are the key types of tools/ products manufactured?
 - a.
 - b.
 - C.
 - d.
- 2. What are the key sectors catered?
 - a.
 - b.
 - C.
 - d.
- 3. Have you ever taken any support from MSME Tool room? If yes, in which field?
 - a. tool design
 - b. tool manufacturing
 - c. Training
 - d. Consultancy
- 4. Would you be interested to take support from MSME Tool room? If yes, in which field?
 - a. tool design
 - b. tool manufacturing
 - c. Training
 - d. Consultancy
- 5. Can you mention key areas/ products you plan to venture in future, where MSME tool rooms can support?
- 6. Would you be open to formation of consortium with MSME Tool Rooms and for manufacturing?
- 7. What are the key manufacturing technologies/ processes currently in use?
- 8. What are the key issues and challenges faced in current processes/ technologies to cater to current requirements?
- 9. What are key technologies that are required but currently not available?

- 10. What are key skills required for managerial manpower and machine operators?
- 11. Existing gaps in skills required for Managerial manpower and Machine operator level?
- 12. Additional skills required to cater to new requirements

18.5 List of MSMEs/other manufacturers contacted in primary survey

SN	Name of the Unit	Region	State	Contact
Discuss	ion over telephone			
1.	Abbott toolfast private limited	Faridabad	Haryana	Mr. Pawan Abbott, 9810033948
2.	Meneta automotive components private limited	Sonipat	Haryana	Mr. Rajender Singh, 0130 6991768
3.	Modern metals India Private limited	Faridabad	Haryana	Mr. Ankit Gupta, 9910012626
4.	Stitch overseas private limited	Gurgaon	Haryana	Mr. Parveen Satija, MD, 0124 4755400
5.	RIYA electrodes private limited	Faridabad	Haryana	Mr. Alok Mishra, 9990803660
6.	JBM auto limited	Gurgaon	Haryana	Mr. H.R. Saini, ED, 9811322081
7.	Marposs India private limited	Gurgaon	Haryana	Mr. Sarabjit Singh, 9871900871
8.	Nagata India private limited	Gurgaon	Haryana	Mr. Praveen Rao, 9810223466
9.	Star wire (India) limited	Faridabad	Haryana	Mr. P.N. Singh, 9350150755
10.	Indian machine tool manufacturers' association	Gurgaon	Haryana	Mr. Srinjay Dash, 9560333553
11.	Agie charmilles (south east Asia) private limited	Bengaluru	Karnataka	Mr. Sureh Peter, 8888775522
12.	Customised technologies private limited	Bengaluru	Karnataka	Dr. R A Narayanan, 9880022700
13.	Acme toolings	Hyderabad	AP	N Satish (Production), 9701346793, 9701346790
14.	Nebashi CNC automation private limited	Hyderabad	AP	Mr Srinivasan 040 - 66622095, 40038721
15.	Vasantha tool crafts private limited	Hyderabad	AP	Mr Giri (Production & Marketing) 040 44613333, 040 44613330

SN	Name of the Unit	Region	State	Contact
16.	Ferromatik milacron India private limited	Ahmedabad	Gujrat	079-25890081, 25890133, 25830063
17.	Global special springs private limited	Ahmedabad	Gujrat	Mr. Rajesh Samal, Manager, 9898594269
18.	Assab sripad steels limited	Chennai	Tamil Nadu	Mr. P.N Krishnaswamy, (Technology) , 93241 50695
19.	Chennai CNC servotronics private limited	Chennai	Tamil Nadu	Mr. D. Subramanian ,MD, 98410 21334
20.	Omax auto limited	Gurgaon	Haryana	Mr Sahu, 9953628953, Mr Umed Singh , 9540800820
21.	Agrim components limited	Faridabad	Haryana	Mr Rajkumar , 01294173174
22.	Arvind engineering	Faridabad	Haryana	1292234359
23.	Bony polymers limited	Faridabad	Haryana	Mr Jabbar Ali Khan, 9650922844
24.	Continental engines limited	Bhiwadi	Rajasthan	Mr Mahesh, 9810305566
25.	DM enterprises	Gurgaon	Haryana	9911225512
26.	Forgewell limited	Faridabad	Haryana	Mr Shyam Khandelwal, 9810038448
27.	Horizon industrial products Private limited	Manesar	Haryana	Mr Abhi Bhatti , 9268567207
28.	M/s Indo alusys India limited	Bhiwadi	Rajasthan	Mr B.S.Trivedi, 9672991453, 01493306500, 01143758100
29.	Kiran udyog	Gurgaon	Haryana	toolroom2@kiranudyogin dia.com, 01244365095
30.	M.R.A metal private limited			Mr Ajay, 01302367585
31.	Machino polymers limited	Gurgaon	Haryana	Mr Vikas Arora , 01244684200

SN	Name of the Unit	Region	State	Contact
32.	Mytex polymers India private limited	Manesar	Haryana	Mr Manoj Kumar Shyam , 9251012179
33.	Paracoat products private limited	Bhiwadi	Rajasthan	Mr Arvind Haldia , 9351006102
34.	Prime polymers	Faridabad	Haryana	01292233794
35.	Rasandik engineering	Gurgaon	Haryana	Mr Monty, 9812431693
36.	RICO auto industries	Khandsa	Haryana	Mr Ram Millen Verma , 9810854803
37.	SKH auto components	Faridabad	Haryana	9650004227
38.	SRS die casting	Gurgaon	Haryana	Mr Vineet Ahuja, 9899290883 Mr Pawan kumar, 9999012015
39.	Tokai engineering private limited	Manesar	Haryana	Mr Pardeep, 9899119508, pardeep.design@tokaiengi neering.com
40.	Uttam strips private limited	Bhiwadi	Rajasthan	Mr Ravinder, 7891005931 Mr Rajiv Malhotra, 7891005884
41.	Vikram fabricators	Faridabad	Haryana	Mr Malik - 98 10 060740, 9312260031
42.	Tata Motors	Jamshedpur	Jharkhand	Mr. Kahli, Manager Tool Room, Tata Motors Jamshedpur
43.	Tata Motors	-	-	Mr. Santosh Raout, Tool Procurement Manager (Nano), TATA motors
44.	Renault Nissan	Chennai	Tamil Nadu	Mr. Nitin Solanki and Mr. Prasana, Tool Procurement Managers
45.	General Motors	Bengaluru	Karnataka	Mr. Venkatesh M, Development manager (tooling)

SN	Name of the Unit	Region	State	Contact
One to O	ne discussion meeting			
46.	Maruti suzuki	Gurgaon	Haryana	Mr M.K.Gupta, GM, 9811158136 Mr S.K.Sharma, Manager (MSTA), 01242341416 Mr Bhupendra Singh Rana, Dy. Manager (Training academy), 9811743255
47.	Nagata India private limited	Gurgaon	Haryana	Mr Mittul Soni, MD 9810312809, Mr Rajiv Sharma, Manager (Design), 9810603608 Mr U.K. Singh , GM (Operations), 9818897900
48.	JBM auto limited	Faridabad	Haryana	Mr Rakesh Chandra Kushwaha, Dy GM, 9711209656
49.	Hero motocorp	Dharuhera	Haryana	Mr Sandeep Wadhwani , Senior manager (Engineering) - 9466080065, Mr M.M.Singh, Dy GM (Human resources), , Mr Sudhansu Sekhar (Product trainer and 9868142186Senior manager human resources), 9311806958
50.	Neel metal products limited	Gurgaon	Haryana	Mr Anuj Agarwal, VP (Corp. projects), 9999211288
51.	Motherson automotive	Gurgaon	Haryana	Mr Sanjeev Sharma, AVP,

SN	Name of the Unit	Region	State	Contact
	technologies and engineering			9650566500
52.	CIPET	Gurgaon	Haryana	Mr. Sisir Kumar, Regional Head, CIPET, Gurgaon
53.	Munjal Showa	Gurgaon	Haryana	Mr. Rakesh Atre, Associate Vice President, Business Excellence
54.	Indian Machine Tool Manufacturers Association	Gurgaon	Haryana	Mr. Srinjoy Das, Director and Head- North Region,9560333553
55.	Shriram pistons and rings limited	Alwar	Rajasthan	Mr. Devendra Mishra, ED & Head, Pathredi works, 8094018032
56.	Motherson sumi systems limited	Bhiwadi	Rajasthan	Mr. S.R. Unnithan, Dy. GM, 8696926880
57.	Hi Tech gears limited	Bhiwadi	Rajasthan	Mr. Akhilesh Agarwal, GM, 9717522663

18.6 Key discussion during primary survey

Name	Key points of discussion
Nagata India, Manesar	Suggested, to start with new auto TC can be sheet metal
(Japanese tool room)	focussed as within auto sector, sheet metal accounts for major
	chunk out of 4 key sub segments - Sheet metal, Plastic, Forging
	tools, Pressure die casting. There is about INR 600 cr of sheet
	metal business for tool rooms in each car model.
	There is a huge demand for operators, die fitters/ makers for
	sheet metal operations.
	Need for manpower trained in CNC, CAD/CAM/CAE.
	Rapid prototyping/ 3d printing will not be of much use in short
	term (at least 5-10 yrs away from now) for sheet-metal parts.
Motherson (tier 1 supplier	Suggested that auto TC should be sheet metal and plastic
of plastic parts to OEMs, has	focused as these account for majority of auto components.
a captive tool room)	Trained manpower in tool design, machine operators are in short
	supply.
JBM auto tool room and	Key industry trends and requirements-
training centre	Overall there is a shortage of trained manpower at machine
	operator level in auto sector
	Requirement of skilled manpower in upcoming areas like
	mechatronics and automation
	One of the key current industry trends in automotive
	manufacturing is light weighting. Auto manufacturers have
	moved from use of low tensile strength steel sheet (~290-300)
	to high tensile strength steel sheet (600-700). Hence need for
	products made of high tensile steel strength of 590
	 Also emphasized that going forward,
	 Technology centres should focus equally on both production
	and training. Training in high end simulation (die design)
	should be provided to engineering graduates
	Tool room should focus on Technologies that are futuristic and
	currently not available in India
Hero Motors Corp, (Plant	Trainees from existing tool rooms lack practical knowledge
Dharuhera)	especially in areas like mechanical maintenance, electrical
	maintenance, automated paint shops, assembly jobs, supply and
	quality assurance (SPC & SQC, PFMEA, Six sigma)
	Key capabilities sought in skilled workers and areas of

	development				
	 Training in Automated paint shops 				
	 Injection and spot welding 				
	Assembly line training				
	Mechanical & electrical maintenance				
Mr. Kahli, Manager, Tool	Discussion on the tooling requirements in the commercial vehicle.				
Room, Tata Motors	Major outcome of the discussion were:				
Jamshedpur	The tooling requirement in sheet metal for a commercial truck is				
	in the range of 50-60 crore.				
	The usage of plastics is increasing in the newer models.				
	There is a need of mid-size sheet metal TC to cater to a large				
	market.				
Mr. Santosh Raout, Tool	Major outcomes of these discussion were mainly the following:				
Procurement Manager	The tooling requirement for 4 wheeler is estimated to be around				
(Nano), TATA motors.	600-700 crore.				
Mr. Nitin Solanki and Mr.	There is a need for mid-size to large size sheet metal TC for 4				
Prasana, Tool	wheeler segment.				
procurement managers,	Mostly, major plastic moulds required for the 4 wheeler are				
Renault Nissan, Chennai.	imported mainly because of cost effectiveness and quality as				
Mr. Venkatesh M,	compared to Indian moulds.				
Development manager	There is a need of mid-size capacity in the plastic mould at least				
(tooling), General	in comparison with the Korean manufacturers.				
Motors, Bengaluru.					

18.7 AICTE norms for engineering and technology institutes

a) Land requirement for technical institutions

	Other than Rural Plac	ces	Rural Areas			
UG Programs Diploma		Standalone PG Programs	UG Programs	Diploma	Standalone PG Programs	
2.5	1.5	2.5	10	5	10	

Land area requirements in acres

- Land Area Requirements:
 - Land area shall cover hostel facilities, if any
 - Land shall be in one continuous piece
 - Considering hilly nature of land in North Eastern States, land may be made available in 3 pieces which are not away from each other by more than 1 Km
- Number of students generally allowed per acre land available when FSI = 1 is 300.
- Built up Area Requirements
 - The Institution area is divided in, Instructional area (INA, carpet area in sq. m.), Administrative area (ADA, carpet area in sq. m.), Amenities area (AMA, carpet area in sq. m.)
 - Circulation area (CIA) is equal to 0.25 (INA+ADA+AMA).
 - Total built up area in sq. m. is equal to (INA+ADA+AMA) + (CIA)

	Instructional area	(carpet area in sqm)
--	--------------------	----------------------

	Number	Duratio	Class	Tutorial	Laboratory	Research	Work	Additiona	Compute	Drawin	Library	Seminar
	of	n of	Room	Rooms(D		Laboratory	Shop	l I	r centre	g Hall	and	Halls
	Division	course	s (C)) PG				WS/Labs			Readin	
	s (UG	(in yrs)		class				for			g Room	
	class of			rooms				Category				
	60)			(H)				Х				
								courses				
Carpet area	i in sqm		66	33	66	66	200	200	150	132	400	132
per room												
Engineering	g/ Technolo	ogy (Degre	e Institu	te)			1	•			•	
Number of rooms required for new	A	4	C=A	D=C/4	10	-	1	-	1	1	1	1
institution												
Total number of rooms (UG)	A	4	C=Ax 4	D=C/4	10/Course*	-	1	2/Course (Max 4)	1	1	1	1/Cours e
Total number of rooms (PG)	F	2	-	H=Fx2	1/Specializatio n	1/Specializatio n	1	2/Course (Max 4)	1	1	1	1/Cours e

Nur	mber	Duratio	Class	Tutorial	Laboratory	Research	Work	Additiona	Compute	Drawin	Library	Seminar
(of	n of	Room	Rooms(D		Laboratory	Shop	1	r centre	g Hall	and	Halls
Div	/ision	course	s (C)) PG				WS/Labs			Readin	
S ((UG	(in yrs)		class				for			g Room	
clas	ass of			rooms				Category				
6	60)			(H)				Х				
								courses				

Where,

- Category X of courses: Mechanical, Production, Civil, Electrical, Chemical, Textile, Marine, Aeronautical and allied courses of each.
- Classrooms, Tutorial rooms and Laboratories required for 2nd, 3rd and 4th year may be added progressively to achieve total number as stated.
- Additional Library (Reading room) area of 50 sq m / per 60 student (UG+PG) intake beyond 420.
- UG laboratories if shared for PG courses shall be upgraded to meet requirements of PG curriculum
- Progressive requirement, 2nd year onwards shall be calculated as 3+3+2 labs/course
- Additional 5 Labs/Course when number of divisions are more than 2/course.
- Round off fraction in calculation to the next integer.

Engineering/ Technology (Diploma and Post Diploma Institute)

	-			1	1	1	1		1	1	1
Carpet area in sqm p	er room		66	33	66	200	200	150	132	400	132
Number of rooms required for new institution	A	Y	C=A	D=C/4	06	1	-	1	1	1	-
Total number of	A	Y	C=AxY	D=C/4	06/Course*	1	2/Course	1	1	1	1

	Number	Duratio	Class	Tutorial	Laboratory	Research	Work	Additiona	Compute	Drawin	Library	Seminar
	of	n of	Room	Rooms(D		Laboratory	Shop	l I	r centre	g Hall	and	Halls
	Division	course	s (C)) PG				WS/Labs			Readin	
	s (UG	(in yrs)		class				for			g Room	
	class of			rooms				Category				
	60)			(H)				Х				
								courses				
rooms								(Max 4)				

Where;

- Category X of courses: Mechanical, Production, Civil, Electrical, Chemical, Textile, Marine, Aeronautical and allied courses of each.
- Classrooms, Tutorial rooms and Laboratories required for 2nd, 3rd and 4th year may be added progressively to achieve total number as stated.
- Additional Library (Reading room) area of 50 sq m / per 60 student (UG+PG) intake beyond 420.
- @#Progressive requirement, 2nd year onwards shall be calculated as 2+2 labs / course
- Round off fraction in calculation to the next integer.
- b) Duration and Entry Level Qualifications for the Technical Program (Engineering and Technology Programs/ Degrees)

SN	Diploma/ Degree	Duration	Eligibility
1	Under graduate degree	4 years	Passed 10+2 examination with Physics and Mathematics as compulsory subjects along with one of
	program (full time)		the Chemistry / Biotechnology / Biology
			Obtained at least 50% marks (45% in case of candidate belonging to reserved category) in the
			above subjects taken together
2	Diploma Programs (full time)	3/4	Passed 10 std. / SSC examination Obtained at least 35% marks at the qualifying examination
		years	

3	3	Post diploma programs	1.5	Passed Diploma examination
			years/ 2	Obtained at least 50% marks (45% in case of candidate belonging to reserved category) at the
			years	qualifying examination.

c) Norms for Intake & Number of Courses / Divisions in the Technical Campus

Diploma/ Degree	Intake per division	Maximum Number of UG/PG courses and/ or divisions allowed in the new division (single shift working)			
		Divisions	Intake		
Diploma/ Post diploma level	60	5	300		
Undergraduate level	60	5	300		
Post graduate degree and post graduate diploma level	18	6	108		

New technical campus in Engineering and technology shall necessarily opt for courses from the following:

- > Applied Electronics & Instrumentation
- Chemical Engineering/Technology
- Civil Engineering/Technology, Construction Engineering Computer Science, Computer Science and Engineering, Computer Science & Information Technology
- > Computer Technology Electrical Engineering or Electrical & Electronics Engineering
- Electronics and Communication Engineering
- Information Technology
- Instrumentation and Control Engineering
- Mechanical Engineering
- Production Engineering

d) Norms for Essential and Desired requirements for Technical Campus (Marked as essential need to be made available at the time of the Expert committee visit)

SN	Details of requirement	Provisioning
	Language Laboratory	
1.	The Language Laboratory is used for language tutorials. These are attended by students who voluntarily opt for Remedial	Essential
1.	English classes. Lessons and exercises are recorded on a weekly basis so that the students are exposed to a variety of listening	LSSEITTA
	and speaking drills.	
2.	Potable Water supply and outlets for drinking water at strategic locations	Essential
3.	Electric Supply	Essential
4.	Backup Electric Supply	As required
5.	Sewage Disposal	Essential
6.	Telephone and FAX	Essential
7.	First Aid facility	. Essential
8.	Vehicle Parking	Essential
9.	Institution web site	Essential
10.	Barrier Free Built Environment for disabled and elderly persons including availability of specially designed toilets for ladies and	Essential
10.	gents separately	Essential
11.	Safety provisions including fire and other calamities	Essential
12.	General Insurance provided for assets against fire, burglary and other calamities	Essential
13.	All weather approach road	Essential
14.	General Notice Board and Departmental Notice Boards	-
		Essential
15.	Medical and Counselling Facilities	Essential
16.	Public announcement system at strategic locations for general announcements/paging and announcements in emergency.	Desired

SN	Details of requirement	Provisioning
17.	Enterprise Resource Planning (ERP) Software for Student-Institution-Parent interaction	Desired
18.	Transport	. Desired
19.	Post, Banking Facility / ATM	Desired
20.	CCTV Security System	Desired
21.	LCD (or similar) projectors in classrooms	Desired
22.	Group Insurance to be provided for the employees	Desired
23.	Insurance for students	Desired
24.	Staff Quarters	Desired

e) Norms for Faculty requirements and Cadre Ratio for Technical campus

Diploma

Diploma	Faculty: Student ratio	Principal/ Director	Head of the Department	Lecturer	Total
		A	В	С	D
Diploma/ Post diploma	1:20	1	1 per department	S/20	A+B+C

S = Sum of number of students as per Approved Student Strength at all years

Degree

Degree	Faculty: Student	Principal/ Director	Professor	Associate professor	Assistant professor	Total
	ratio	A	В	С	D	A+B+C+D
Undergraduate	1:15	1	(S/15 x R) - 1	(S/15 x R) x2	(S/15 x R) x6	S/15

	Postgraduate	1:12	-	(S/12 x R)	(S/12 x R)	(S/12 x R)	S/12
--	--------------	------	---	------------	------------	------------	------

Note:

For undergraduate: S = Sum of number of students as per Approved Student Strength at all years, R = (1+2+6)

For Postgraduate: S = Sum of number of students as per Approved Student Strength at all years *R = (1+2), #R = (1+2+6)

18.8 Key large units in the region

List of Key large units in Bhiwadi

SN	Name of the Unit	Address	Contact Person	Contact Number	E-mail Id
	Honda Cars	SPL-1, Khushkhera,	Sunilkumar	9772208703	skyadav@hon
1	India Ltd.	Industrial Area, Bhiwadi	Yadav		dacarindia.co
			General		m
			Manager		
	Honda	SPL-2(D), 2(E), 2(F) &	Pradip Kumar	9799574888	pradip.jain@h
2	Motorcycle and	2(G), Tapukara,	Jain		onda2wheele
2	Scooter India	Industrial Area, Bhiwadi	Sr. Manager		rsindia.com
	Pvt. Ltd.				
	Shriram Piston	892-893, Pathradi,	R.B. Sharma	9810244760	rb.sharma@s
3	& Rings Limited	Industrial Area, Bhiwadi	General		hrirampistons
			Manager		.com
	Shree Cement	3-11, A-1, Khushkhera,	D.K. Yadav	9214339051	yadavdk@shr
4	Ltd.	Industrial Area, Bhiwadi	Asst. GM	9887101111	eecementItd.
			(P&A)		com
	Lafarge Boral	SP-73-74, Khushkhera,	Jahan Khan	8696911800	jahan.khan@i
5	Gypsum India	Industrial Area, Bhiwadi			n.boral.com
	Pvt. Ltd.				
	Kajaria	Tijara Road, Village	Dr. Rajveer	9810112717	rajveer_1953
6	Ceramics Ltd.	Gailpur	Choudhary	9810013718	@hotmail.co
			Vice President		m
	Jaquar &	SP-53, Phase-I,	Ved Bandhu	9983323782	bandhu@jaqu
7	Company Pvt	Industrial Area, Bhiwadi	Aggarwal		ar.com
	Ltd.				
	Orient Craft	A-809-820, Pathradi,	S.K. Tiwari	8696937607	personnel.ch
8	Limited.	Industrial Area, Bhiwadi	Manager (HR)		opanki@orien
					tcraft.com
	Sakata Inx	1245, Industrial Area,	S.K. Chhabra	9810183096	sunil.chhabra
9	(India) Ltd.	Bhiwadi	Head-Plant		@sakataindia.
					com
	Siegwerk India	Alwar Road, Industrial	Girish Agarwal	9818817500	girish.agarwa
10	Pvt. Ltd.	Area, Bhiwadi	General		l@siegwerk.c
10			Manager		om
			(HR&Admin)		

SN	Name of the Unit	Address	Contact Person	Contact Number	E-mail Id
	Orient Syntex	SP-147, Phase-I,	H.R. Sharma	9414012663	orientsyntex
11		Industrial Area, Bhiwadi	Executive		@yahoo.in
			Director		
	Balkrishna	SP-923, Phase-III,	Pankaj	8058998303	pankaj.kudesi
12	Industries Ltd.	Industrial Area, Bhiwadi	Kudesia		a@bkt-
12			Sr. General		tires.com
			Manager		
	KEI Industries	SP-920, Phase-III,	Rajinder Singh	9983313818	rajender.sing
13	Ltd.	Industrial Area, Bhiwadi	Sr. Manager		h@kei-
					ind.com
	Mehru	1247, Phase-I,	Sandeep P.	9694098050	sandeep@me
14	Electricals &	Industrial Area, Bhiwadi	Sharma		hru.net
14	Mech. Engrs.		Executive		
			Director		
	Insecticides	E-443, Chopanki,	Madhur Gupta	9667217564	madhurgupta
15	(India) Ltd.	Industrial Area, Bhiwadi	Admin.		@iilindia.co.in
			Manager		
	Tata Bluescope	298-299, Chopanki,	Narendra	9799004004	narendra.pra
16	Steel Ltd.	Industrial Area, Bhiwadi	Prabhu		bhu@tatablue
10			Head HR		scopesteel.co
					m
	Federal Mogul	812/B-1&2, Industrial	Dhirender	9694096501	dhirender.sin
17	Automotive	Area, Bhiwadi	Singh		gh@federalm
	Products (I) Ltd				ogul.com
18	Ajanta Chemical	812-E-11, Phase-III,	Arun Tyagi	9414013077	arun@ajantas
10	Industries	Industrial Area, Bhiwadi	Sr. Manager	9983300577	oya.com

List of other large units in the region

District	Unit		
	1. Ashok Leyland		
	2. Lord ChloroAlkalies		
Alwar	3. Parryware Roca Pvt. Ltd.,		
Alwai	4. United spirits Ltd.		
	5. Carlsberg India Pvt. Ltd.		
	6. Tafe Motors & Tractor Ltd.		

District	Unit	
	7. M/s Climate System India Ltd.	
	1. National Engg. Ind. Ltd.	
	2. K C Mercantile Ltd.	
	3. Poddar Pigment Ltd.	
	4. Wire & Fabric (SA) (P) Ltd.	
	5. KEC International Ltd.	
	6. ASIL Industries Ltd.	
Jaipur	7. Hindusthan Coco-cola Beverage (P) Ltd.	
Jaipui	8. Krishna Paper Mill & Industry Ltd.	
	9. Amrit Environmental Technology (P) Ltd.	
	10. Ericsson Tele Communication	
	11. Grasim Industries Ltd.	
	12. Mahindra & Mahindra Ltd.	
	13. Manglalspat (Jaipur) Ltd.	
	14. Neesa Leisure Ltd.	
	Dharuhera Industrial area:	
	1. Hero Honda Motors Ltd.	
	2. O.C.C.L. Ltd.	
	3. G.K. Invel Transmission Ltd.	
	4. Pasupati Spining And Weaving Mills Ltd.	
	5. East India Syntex Ltd.	
	6. Inertia India Ltd.	
	7. Delton Cable Ltd.	
	8. Uni Products Ltd.	
	9. Rico Auto	
Rewari	10. Omax Auto Ltd	
	Bawal Industrial area:	
	1. M/s Y.K.K.India Ltd.	
	2. M/s Asahi India Safety Glass Ltd.	
	3. M/s Backton& Dickinson Ltd.	
	4. M/s Svedala India Ltd.	
	5. M/s Anant Raj Clay Products	
	Rewari Industrial area:	
	1. M/s Aggarwal Metal Works Ltd.	
	 M/s Aggai wai Metal works Etd. M/s Gupta Enterprises 	

District	Unit	
	3. M/s Haryana Petro Chemicals Ltd.	
	4. M/s Everest Metal Works	
	1. Bata India Ltd.	
	2. Bhartia Cutler Hammer	
	3. Eicher Tractor Ltd.	
	4. Escorts JCB Ltd.	
	5. Escorts Ltd.	
	6. Escorts Yamaha Motors India Ltd.	
	7. GKN Invel Transmission Ltd.	
Faridabad	8. Goodyear India Ltd.	
1 andabad	9. Hindustan Wires Ltd.	
	10. Hyderabad Industries Ltd.	
	11. Hyderabad Industries Ltd.	
	12. Jindal Strips Ltd.	
	13. Lakhani India Ltd.	
	14. Nuchem Ltd.	
	15. Tecumseh India P. Itd.	
	16. Whirlpool India Ltd.	
	1. B & C textiles private limited	
	2. Cast master	
	3. Chelsea mills	
	4. Devyani international limited	
	5. Exciting fashions & embroidery limited	
	6. Frestex orient craft private limited	
	7. Jaibad metal co. india private limited	
	8. Jindal stainless steelway limited	
	9. JNS instruments	
Gurgaon	10. Kuma stainless tubes Itd	
	11. Locoanet hemant India private limited	
	12. Magic international private limited	
	13. Microtool sterlization services medical items private limited	
	14. Munjal showa limited	
	15. Suzuki metal India limited	
	16. V.K. International	
	17. Dantal hydraulic private limited	
	18. DDSI foods limited	
	19. Fidility network India limited	

District	Unit
	20. Hero motors limited
	21. Hewetts associates
	22. JBM textile private limited
	23. M & M machine craft private limited
	24. Maruti udyog limited
	25. Pearl global limited (formerly known as Mina exports limited
	26. Subrose India limited
	27. Suzuki powertain India limited
	28. Cosco India limited
	29. Kautilya industries private limited
	30. Mag filters & equipment private limited
	1. HCL Group Computers / Software
	2. Panasonic Electronics
	3. Amit Agro
	4. Fedders Lloyd
	5. Flex Industries
	6. Indo Copp
	7. BPL Sanyo
	8. Samsung
	9. Phoenix Lamps
Gautam Budh	10. SGS Thompson
Nagar	11. Tata Unisys
	12. TCS Software
	13. Eveready Torch
	14. National Fertiliser
	15. HUDCO
	16. BHEL
	17. PDIL
	18. IOC
	19. NTPC

18.9 Specification of tools

Tooling activities	Tool size	Specification	
	Small	2.5 metre X 2 metre X 1.5 metre	
Sheet metal	Medium	Up to 3 metre X 2.5 metre X 2 metre	
	Large	Any dimension greater than that of medium size	
	Small	Up to 500 grams	
Plastic mould	Medium	Between 500 to 2,000 grams	
	Large	Beyond 2,000 grams	

18.10 Non-Incumbency certificate in respect of land

एमएसएमई-विकास संस्थान सूक्ष्म, लघु एवं मध्यम उद्यम मंत्रालय भारत सरकार बाईस गोदाम औद्योगिक सम्पदा, जयपुर - 302 006 (राजस्थान)

MSME- Development Institute

Ministry of Micro, Small & Medium Enterprises Government of India Bais Godam Industrial Estate Jaipur - 302 006 (Rajasthan)

MSME-DI/Tool Room-Bhiwadi/ 2012-13 / つ3)

Date: 16.06.2014

The Development Commissioner (MSME), Ministry of MSME, Govt. of India, Nirman Bhavan, 7th Floor, Maulana Azad Road, New Delhi – 110 108.

Kind Atten: Shri R.K.Rai, Director (TR)

Sub: Non-Incumbency certificate in respect of Land allotted by State Government at Bhiwadi-Reg.

Sir,

Kindly refer to your office letter no.21/Tool Room/Rajasthan/2012/TR Dt. 13.06.2014 on the above mentioned subject. In this regard, it is to submit that the officials of this office visited the site of proposed Technology Centre at Bhiwadi on 14.06.2014 and found that the land is free from all incumbencies.

This is for information & necessary action at your end please.

Aptest

Yours faithfully,

(Vikas Gupta) Dy. Director (Mech.) For Director

819/01212/201

Phone: 0141-2212098, 2213099, 2215847 (EPABX), 0141-2210553 (Director), Fax: 0141-2210553 E-mail : dcdi-jaipur@dcmsme.gov.in, visit us : www. msmedijaipur.gov.in, DC(MSME) : www.dcmsme.gov.in

18.11 Profitability - Alternate scenario

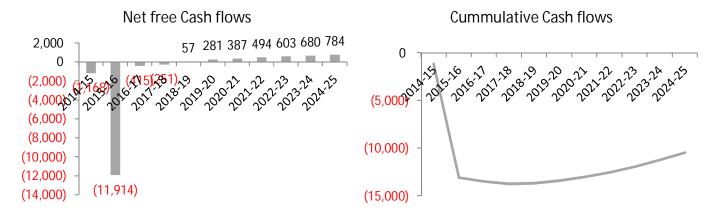

Overall project profitability in this scenario has been estimated considering phased investment in plant & machinery and infrastructure. A debt equity ratio of 60:40 has been considered in this scenario. The interest rate on debt is the World bank loan interest rate of 3.1%. Due to relatively lower cost of debt than equity, the project IRR in this scenario for a period of 12 years till 2026-27 is higher at 29.8%.

Table 65: Profitability with investment plant & machinery under alternate scenario

Project IRR	29.8%
Payback period	>11 years
Average DSCR (2018-2026)	2.4

The project is expected to generate positive net free cash flows starting year 2018-19. However equity of about INR 1120 lakhs will have to be infused in first four years to balance the negative cash flows.

Figure 44: Net free Cash flows and Cumulative Cash flows alternate scenario

References

Reports and websites referred;

- DIP Data, Ministry of MSME
- District industries centre, District Industrial profiles-MSME
- > India tool room industry report 2011, Tool & Gauge Manufacturers Association
- Draft Environmental Management Framework, MoMSME
- Environmental Social Standards World Bank Group
- Environmental master plan Alwar
- News articles and company announcements
- LMC Forecasts Q4 2013 based on the current product plans of OEMs
- http://www.bmabhiwadi.com/aboutbhiwadi.html
- http://ruidp.rajasthan.gov.in/IEE%20PDF/IEE%20Alwar%20Water%20Supply.pdf
- http://www.bhiwadionline.in/city-guide/geography-of-bhiwadi
- http://dte.rajasthan.gov.in/INTAKE-ITC/ALWAR.htm
- http://dte.rajasthan.gov.in/map-rajasthan/Technical%20Institutes/district/Alwar.pdf
- http://dte.rajasthan.gov.in/map-rajasthan/Technical%20Institutes/district/Alwar.pdf
- http://www.techeduhry.nic.in/seat-distribute/Dist-wise-list-of-polytechnics.pdf
- http://itiharyana.gov.in/download/List%20of%20ITI.pdf
- http://techeduhry.nic.in/seat-distribute/engg.pdf
- http://bipraj.raj.nic.in/pdf/Single%20Window%20_Eng_%20Rules.pdf
- http://environmentclearance.nic.in/Auth/openletter.aspx?EC=5331
- http://pib.nic.in/newsite/erelease.aspx?relid=75314 http://pppinindia.com/business-rajasthan.php
- http://rerc.rajasthan.gov.in
- http://www.riico.co.in/DOLR%20FORM%20E.htm
- http://www.dmicdc.com/
- www.investrajasthan.com/
- > Directorate of Technical Education, Rajasthan, Department of Industrial training, Haryana
- Department of Technical Education, Haryana
- Government of Rajasthan
- Planning commission
- Rajasthan skill gap report
- Brief industrial profile of Alwar district, Ministry of MSME.
- Directorate of economics and statistics, Rajasthan
- Department of planning, Government of Punjab

Our offices

Ahmedabad 2nd Floor, Shivalik Ishaan Near CN Vidhyalaya, Ambawadi, Ahmedabad - 380 015 Tel: + 91 79 6608 3800 Fax: + 91 79 6608 3900 Bengaluru "UB City", Canberra Block 12th & 13th floor No.24, Vittal Mallya Road Bengaluru - 560 001 Tel: + 91 80 4027 5000, + 91 80 6727 5000 Fax: + 91 80 2210 6000 Fax: + 91 80 2224 0695 Chandigarh 1st Floor, SCO: 166-167 Ernst & Young Pvt. Ltd. Sector 9-C, Madhya Marg, Chandigarh, Punjab 160009 Tel: +91 172 6717800 Fax: +91 172 6717888 Chennai TPL House, 2nd floor No 3, Cenotaph Road Teynampet Chennai - 600 018 Tel: + 91 44 4219 4400 + 91 44 6632 8400 Fax: + 91 44 2431 1450 Hyderabad 205, 2nd floor Ashoka Bhoopal Chambers Sardar Patel Road Secunderabad - 500 003 Tel: + 91 40 6627 4000 Fax: + 91 40 2789 8851 Oval Office, 18, iLabs Centre, Hitech City, Madhapur, Hyderabad - 500081 Tel: +91 40 6736 2000 Fax: +91 40 6736 2200 Kochi 9th Floor, Abad Nucleus NH-49, Maradu PO Kochi, Kerala 682304, India Tel: + 91 484-3044000 Fax: + 91 484 2705393

Kolkata 22, Camac Street Block 'C', 3rd floor Kolkata - 700 016 Tel: + 91 33 6615 3400 Fax: + 91 33 2281 7750 Mumbai 6th floor & 18th floor **Express Towers** Nariman Point Mumbai - 400 021 + 91 22 6657 9200 (6th floor) Tel: + 91 22 6665 5000 (18th floor) Fax: + 91 22 22876401 (6th floor) + 91 22 2282 6000 (18th floor) Block B-2, 5th Floor, Nirlon Knowledge Park, Off Western Express Highway, Goregaon (E), Mumbai - 400 063 Tel: +91 22 6749 8000 Fax: +91 22 6749 8200 15th Floor, The Ruby, 29, Senapati Bapat Marg, Dadar (W), Mumbai - 400 028, India Tel: +91 22 6192 000 NCR Golf View Corporate Tower - B Near DLF Golf Course Sector 42 Gurgaon - 122002 Tel: + 91 124 464 4000 Fax: + 91 124 464 4050 6th floor, HT House 18-20 Kasturba Gandhi Marg New Delhi - 110 001 Tel: + 91 11 4363 3000 Fax: + 91 11 4363 3200 4th and 5th Floor, Plot No. 2B, Tower 2, Sector 126, NOIDA - 201 304 Gautam Budh Nagar, UP, India Tel: +91 120 671 7000 Fax: _91 120 671 7171 Pune C-401, 4th floor Panchshil Tech Park Yerwada (Near Don Bosco School) Pune - 411 006 Tel: + 91 20 6603 6000 Fax: + 91 20 6601 5900

Ernst & Young LLP

Assurance | Tax | Transactions | Advisory

About EY

EY is a global leader in assurance, tax, transaction and advisory services. The insights and quality services we deliver help build trust and confidence in the capital markets and in economies the world over. We develop outstanding leaders who team to deliver on our promises to all of our stakeholders. In so doing, we play a critical role in building a better working world for our people, for our clients and for our communities.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. For more information about our organization, please visit ey.com.

Ernst & Young LLP is one of the Indian client serving member firms of EYGM Limited. For more information about our organization, please visit www.ey.com/in.

Ernst & Young LLP is a Limited Liability Partnership, registered under the

Limited Liability Partnership Act, 2008 in India, having its registered office at 22 Camac Street, 3rd Floor, Block C, Kolkata - 700016

© 2014 Ernst & Young LLP. Published in India.

All Rights Reserved.

ED 0515

This publication contains information in summary form and is therefore intended for general guidance only. It is not intended to be a substitute for detailed research or the exercise of professional judgment. Neither Ernst & Young LLP nor any other member of the global Ernst & Young organization can accept any responsibility for loss occasioned to any person acting or refraining from action as a result of any material in this publication.

Artwork by: JG

EY refers to the global organization, and/or one or more of the independent member firms of Ernst & Young Global Limited